Solveeit Logo

Question

Question: If the map $f: R \rightarrow R$ be defined by $f(x) = 4x - 1$ and the $g: R \rightarrow R$ be define...

If the map f:RRf: R \rightarrow R be defined by f(x)=4x1f(x) = 4x - 1 and the g:RRg: R \rightarrow R be defined by g(x)=x3+2g(x) = x^3 + 2. What is value of (gof)x(gof)x?

A

64x348x2+12x+164x^3 - 48x^2 + 12x + 1

B

4x374x^3 - 7

C

64x3+48x212x+164x^3 + 48x^2 - 12x + 1

D

4x3+74x^3 + 7

Answer

64x348x2+12x+164x^3 - 48x^2 + 12x + 1

Explanation

Solution

The problem asks for the composition of two functions, (gf)(x)(g \circ f)(x), given f(x)f(x) and g(x)g(x).

The definition of the composition of functions (gf)(x)(g \circ f)(x) is g(f(x))g(f(x)).

Given functions are: f(x)=4x1f(x) = 4x - 1 g(x)=x3+2g(x) = x^3 + 2

To find (gf)(x)(g \circ f)(x), we substitute f(x)f(x) into g(x)g(x): (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x)) Substitute f(x)=4x1f(x) = 4x - 1 into g(x)g(x): (gf)(x)=g(4x1)(g \circ f)(x) = g(4x - 1)

Now, replace xx in the expression for g(x)g(x) with (4x1)(4x - 1): g(x)=x3+2g(x) = x^3 + 2 So, g(4x1)=(4x1)3+2g(4x - 1) = (4x - 1)^3 + 2

Next, expand the term (4x1)3(4x - 1)^3 using the binomial expansion formula (ab)3=a33a2b+3ab2b3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3. Here, a=4xa = 4x and b=1b = 1. (4x1)3=(4x)33(4x)2(1)+3(4x)(1)2(1)3(4x - 1)^3 = (4x)^3 - 3(4x)^2(1) + 3(4x)(1)^2 - (1)^3 =64x33(16x2)(1)+3(4x)(1)1= 64x^3 - 3(16x^2)(1) + 3(4x)(1) - 1 =64x348x2+12x1= 64x^3 - 48x^2 + 12x - 1

Finally, substitute this back into the expression for (gf)(x)(g \circ f)(x): (gf)(x)=(64x348x2+12x1)+2(g \circ f)(x) = (64x^3 - 48x^2 + 12x - 1) + 2 (gf)(x)=64x348x2+12x+1(g \circ f)(x) = 64x^3 - 48x^2 + 12x + 1