Solveeit Logo

Question

Question: The value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix...

The value of the determinant 111abca2b2c2=\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} =

A

(a-b)-(b-c)-(c-a)-(1-1-1)

B

(a-b)-(b-c)-(c-a)

C

(a-b)-(b-c)-(c-a)-0

D

(a-b)-(b-c)-(c-a)-(1+1+1)

E

(a-b)-(b-c)-(c-a)

Answer

The options provided are incorrect. The value of the determinant is (ba)(ca)(cb)(b-a)(c-a)(c-b).

Explanation

Solution

The determinant given is a Vandermonde determinant. The general form of a 3×33 \times 3 Vandermonde determinant is:

D=111xyzx2y2z2D = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}

To evaluate this determinant, we can perform column operations:

Apply C2C2C1C_2 \to C_2 - C_1 and C3C3C1C_3 \to C_3 - C_1:

D=11111abacaa2b2a2c2a2=100abacaa2(ba)(b+a)(ca)(c+a)D = \begin{vmatrix} 1 & 1-1 & 1-1 \\ a & b-a & c-a \\ a^2 & b^2-a^2 & c^2-a^2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ a^2 & (b-a)(b+a) & (c-a)(c+a) \end{vmatrix}

Now, expand the determinant along the first row (R1R_1):

D=1baca(ba)(b+a)(ca)(c+a)0+0D = 1 \cdot \begin{vmatrix} b-a & c-a \\ (b-a)(b+a) & (c-a)(c+a) \end{vmatrix} - 0 + 0

Factor out (ba)(b-a) from the first column and (ca)(c-a) from the second column of the 2×22 \times 2 determinant:

D=(ba)(ca)11b+ac+aD = (b-a)(c-a) \begin{vmatrix} 1 & 1 \\ b+a & c+a \end{vmatrix}

Now, evaluate the 2×22 \times 2 determinant:

D=(ba)(ca)[1(c+a)1(b+a)]=(ba)(ca)[c+aba]=(ba)(ca)(cb)D = (b-a)(c-a) [1 \cdot (c+a) - 1 \cdot (b+a)] = (b-a)(c-a) [c+a-b-a] = (b-a)(c-a)(c-b)

Thus, the value of the determinant is (ba)(ca)(cb)(b-a)(c-a)(c-b). The options provided are in the form of sums/differences, not products, and therefore do not represent the correct value of the determinant. For example, option (b) is (ab)(bc)(ca)=2a2b(a-b)-(b-c)-(c-a) = 2a-2b, which is incorrect. All options are mathematically incorrect representations of the determinant's value.