Question
Question: The value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix...
The value of the determinant 1aa21bb21cc2=

(a-b)-(b-c)-(c-a)-(1-1-1)
(a-b)-(b-c)-(c-a)
(a-b)-(b-c)-(c-a)-0
(a-b)-(b-c)-(c-a)-(1+1+1)
(a-b)-(b-c)-(c-a)
The options provided are incorrect. The value of the determinant is (b−a)(c−a)(c−b).
Solution
The determinant given is a Vandermonde determinant. The general form of a 3×3 Vandermonde determinant is:
D=1xx21yy21zz2
To evaluate this determinant, we can perform column operations:
Apply C2→C2−C1 and C3→C3−C1:
D=1aa21−1b−ab2−a21−1c−ac2−a2=1aa20b−a(b−a)(b+a)0c−a(c−a)(c+a)
Now, expand the determinant along the first row (R1):
D=1⋅b−a(b−a)(b+a)c−a(c−a)(c+a)−0+0
Factor out (b−a) from the first column and (c−a) from the second column of the 2×2 determinant:
D=(b−a)(c−a)1b+a1c+a
Now, evaluate the 2×2 determinant:
D=(b−a)(c−a)[1⋅(c+a)−1⋅(b+a)]=(b−a)(c−a)[c+a−b−a]=(b−a)(c−a)(c−b)
Thus, the value of the determinant is (b−a)(c−a)(c−b). The options provided are in the form of sums/differences, not products, and therefore do not represent the correct value of the determinant. For example, option (b) is (a−b)−(b−c)−(c−a)=2a−2b, which is incorrect. All options are mathematically incorrect representations of the determinant's value.