Question
Question: The value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix...
The value of the determinant 1aa21bb21cc2=

A
(a-b)(b-c)(c-a)(a-b-c)
B
(a-b)(b-c)(c-a)(a+b+c)
C
(a-b)(b-c)(c-a)
D
(a+b)(b+c)(c+a)(a+b+c)
Answer
(a-b)(b-c)(c-a)
Explanation
Solution
The given determinant is a Vandermonde determinant. It can be evaluated using elementary column operations.
Steps:
-
Apply column operations to create zeros in the first row.
-
Expand the determinant along the first row.
-
Factor out common terms.
-
Evaluate the remaining 2x2 determinant.
-
Rearrange the terms to match the options.
The determinant simplifies to (a−b)(b−c)(c−a).