Solveeit Logo

Question

Question: If cos 2x = 7/8 find sin x...

If cos 2x = 7/8 find sin x

A

±1/4\pm 1/4

B

±1/2\pm 1/\sqrt{2}

C

±1/8\pm 1/\sqrt{8}

D

±1/2\pm 1/2

Answer

±1/4\pm 1/4

Explanation

Solution

The problem asks us to find the value of sinx\sin x given cos2x=7/8\cos 2x = 7/8.

We use the double angle identity for cosine, which relates cos2x\cos 2x to sinx\sin x: cos2x=12sin2x\cos 2x = 1 - 2\sin^2 x

Substitute the given value of cos2x\cos 2x into the identity: 78=12sin2x\frac{7}{8} = 1 - 2\sin^2 x

Now, we need to solve for sinx\sin x. First, rearrange the equation to isolate 2sin2x2\sin^2 x: 2sin2x=1782\sin^2 x = 1 - \frac{7}{8}

To subtract the fractions on the right side, find a common denominator: 2sin2x=88782\sin^2 x = \frac{8}{8} - \frac{7}{8} 2sin2x=182\sin^2 x = \frac{1}{8}

Next, divide both sides by 2 to find sin2x\sin^2 x: sin2x=18×2\sin^2 x = \frac{1}{8 \times 2} sin2x=116\sin^2 x = \frac{1}{16}

Finally, take the square root of both sides to find sinx\sin x: sinx=±116\sin x = \pm \sqrt{\frac{1}{16}} sinx=±14\sin x = \pm \frac{1}{4}

The value of sinx\sin x is ±1/4\pm 1/4.