Solveeit Logo

Question

Question: If cos 2x = 7/8 find sin x...

If cos 2x = 7/8 find sin x

A

±1/4\pm 1/4

B

±1/2\pm 1/\sqrt{2}

C

±1/8\pm 1/\sqrt{8}

D

±1/2\pm 1/2

Answer

±1/4\pm 1/4

Explanation

Solution

We use the double angle identity for cosine that relates cos2x\cos 2x to sinx\sin x:

cos2x=12sin2x\cos 2x = 1 - 2\sin^2 x

Substitute the given value of cos2x=7/8\cos 2x = 7/8 into the identity:

7/8=12sin2x7/8 = 1 - 2\sin^2 x

Now, we need to solve this equation for sinx\sin x. Rearrange the equation to isolate 2sin2x2\sin^2 x:

2sin2x=17/82\sin^2 x = 1 - 7/8 2sin2x=(87)/82\sin^2 x = (8 - 7)/8 2sin2x=1/82\sin^2 x = 1/8

Divide both sides by 2:

sin2x=1/82\sin^2 x = \frac{1/8}{2} sin2x=1/16\sin^2 x = 1/16

Take the square root of both sides to find sinx\sin x:

sinx=±1/16\sin x = \pm \sqrt{1/16} sinx=±1/4\sin x = \pm 1/4