Solveeit Logo

Question

Question: If cos 2x = 7/8 find sin x...

If cos 2x = 7/8 find sin x

A

±1/4\pm 1/4

B

±1/2\pm 1/\sqrt{2}

C

±1/8\pm 1/\sqrt{8}

D

±1/2\pm 1/2

Answer

±1/4\pm 1/4

Explanation

Solution

We are given that cos2x=78\cos 2x = \frac{7}{8} and we want to find sinx\sin x. We can use the double angle identity cos2x=12sin2x\cos 2x = 1 - 2\sin^2 x. Substituting the given value, we have:

78=12sin2x\frac{7}{8} = 1 - 2\sin^2 x

Rearranging the equation to solve for sin2x\sin^2 x:

2sin2x=178=182\sin^2 x = 1 - \frac{7}{8} = \frac{1}{8}

sin2x=116\sin^2 x = \frac{1}{16}

Taking the square root of both sides:

sinx=±116=±14\sin x = \pm \sqrt{\frac{1}{16}} = \pm \frac{1}{4}

Therefore, sinx=±14\sin x = \pm \frac{1}{4}.