Solveeit Logo

Question

Question: Find the integral $\int x \sin(x^2) dx$...

Find the integral xsin(x2)dx\int x \sin(x^2) dx

A

12cos(x2)+C-\frac{1}{2} cos(x^2) + C

B

sin(x2)2+C\frac{sin(x^2)}{2} + C

C

cos(x2)2+C-\frac{cos(x^2)}{2} + C

D

sin(x2)2+C-\frac{sin(x^2)}{2} + C

Answer

12cos(x2)+C-\frac{1}{2} \cos(x^2) + C

Explanation

Solution

The integral xsin(x2)dx\int x \sin(x^2) dx is solved using u-substitution. Let u=x2u = x^2, then du=2xdxdu = 2x \, dx, which implies xdx=12dux \, dx = \frac{1}{2} du. Substituting these into the integral yields sin(u)12du\int \sin(u) \frac{1}{2} du. Integrating 12sin(u)\frac{1}{2} \sin(u) with respect to uu gives 12cos(u)+C-\frac{1}{2} \cos(u) + C. Finally, substitute back u=x2u=x^2 to get 12cos(x2)+C-\frac{1}{2} \cos(x^2) + C.