Solveeit Logo

Question

Question: Find the coordinates of the point P which divides the line segment joining A(4,3) and B(8,5) in the ...

Find the coordinates of the point P which divides the line segment joining A(4,3) and B(8,5) in the ratio 2:1 internally.

Answer

(203,133)\left(\frac{20}{3}, \frac{13}{3}\right)

Explanation

Solution

The coordinates of the point P which divides the line segment joining A(x1,y1x_1, y_1) and B(x2,y2x_2, y_2) in the ratio m:n internally are given by the section formula:

P(x,y)=(mx2+nx1m+n,my2+ny1m+n)P(x, y) = \left( \frac{m x_2 + n x_1}{m+n}, \frac{m y_2 + n y_1}{m+n} \right)

Given:
Point A(x1,y1x_1, y_1) = (4, 3)
Point B(x2,y2x_2, y_2) = (8, 5)
Ratio m:n = 2:1 (so, m = 2, n = 1)

Substitute the values into the formula:

For the x-coordinate of P:
x=2×8+1×42+1x = \frac{2 \times 8 + 1 \times 4}{2+1}
x=16+43x = \frac{16 + 4}{3}
x=203x = \frac{20}{3}

For the y-coordinate of P:
y=2×5+1×32+1y = \frac{2 \times 5 + 1 \times 3}{2+1}
y=10+33y = \frac{10 + 3}{3}
y=133y = \frac{13}{3}

Therefore, the coordinates of point P are (203,133)\left( \frac{20}{3}, \frac{13}{3} \right).