Solveeit Logo

Question

Question: If f(x) = 3x + 5 and g(x) = x² -7, then find fog(x)....

If f(x) = 3x + 5 and g(x) = x² -7, then find fog(x).

A

3x2+163x^2+16

B

132+225x135x2+27x3-132+225x-135x^2+27x^3

C

132+225x+135x2+27x3132+225x+135x^2+27x^3

D

3x2163x^2-16

Answer

3x2163x^2-16

Explanation

Solution

To find fog(x), we need to substitute the function g(x) into f(x).

Given functions: f(x)=3x+5f(x) = 3x + 5 g(x)=x27g(x) = x^2 - 7

We want to find fog(x)fog(x), which is defined as f(g(x))f(g(x)).

Step 1: Replace 'x' in the expression for f(x) with the entire expression for g(x). f(g(x))=f(x27)f(g(x)) = f(x^2 - 7)

Step 2: Substitute (x27)(x^2 - 7) into the formula for f(x)f(x). f(x)=3x+5f(x) = 3x + 5 So, f(x27)=3(x27)+5f(x^2 - 7) = 3(x^2 - 7) + 5

Step 3: Distribute the 3 into the parenthesis. 3(x27)+5=3x23×7+53(x^2 - 7) + 5 = 3x^2 - 3 \times 7 + 5 =3x221+5 = 3x^2 - 21 + 5

Step 4: Combine the constant terms. 3x221+5=3x2163x^2 - 21 + 5 = 3x^2 - 16

Thus, fog(x)=3x216fog(x) = 3x^2 - 16.

The problem asks for the composite function fog(x)fog(x), which means f(g(x))f(g(x)). We are given f(x)=3x+5f(x) = 3x + 5 and g(x)=x27g(x) = x^2 - 7. To find f(g(x))f(g(x)), we substitute the expression for g(x)g(x) into f(x)f(x) in place of xx. So, f(g(x))=f(x27)f(g(x)) = f(x^2 - 7). Now, using the definition of f(x)f(x), we replace xx with (x27)(x^2 - 7): f(x27)=3(x27)+5f(x^2 - 7) = 3(x^2 - 7) + 5. Distributing the 3, we get 3x221+53x^2 - 21 + 5. Combining the constant terms, we obtain 3x2163x^2 - 16.