Solveeit Logo

Question

Question: If $f(x) = sin(x^2)$, what is $f'(x)$?...

If f(x)=sin(x2)f(x) = sin(x^2), what is f(x)f'(x)?

A

2xcos(x2)2x \cos(x^2)

B

sin(x2)cos(x)sin(x^2) \cdot cos(x)

C

cos(x2)cos(x^2)

D

2xsin(x2)2x sin(x^2)

Answer

2xcos(x2)2x \cos(x^2)

Explanation

Solution

To find the derivative of f(x)=sin(x2)f(x) = \sin(x^2), we use the chain rule.

Let y=f(x)=sin(x2)y = f(x) = \sin(x^2). We can consider this as a composite function where y=sin(u)y = \sin(u) and u=x2u = x^2.

According to the chain rule, dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.

First, find the derivative of yy with respect to uu: dydu=ddu(sin(u))=cos(u)\frac{dy}{du} = \frac{d}{du}(\sin(u)) = \cos(u)

Next, find the derivative of uu with respect to xx: dudx=ddx(x2)=2x\frac{du}{dx} = \frac{d}{dx}(x^2) = 2x

Now, substitute u=x2u = x^2 back into cos(u)\cos(u) and multiply the two derivatives: f(x)=cos(x2)(2x)f'(x) = \cos(x^2) \cdot (2x) f(x)=2xcos(x2)f'(x) = 2x \cos(x^2)