Solveeit Logo

Question

Question: Let $\vec{a} = \hat{i}-\hat{j}, \vec{b} = \hat{j}-\hat{k}, \vec{c} = \hat{k}-\hat{i}$. If $\hat{d}$ ...

Let a=i^j^,b=j^k^,c=k^i^\vec{a} = \hat{i}-\hat{j}, \vec{b} = \hat{j}-\hat{k}, \vec{c} = \hat{k}-\hat{i}. If d^\hat{d} is a unit vector such that ad^=0=[bcd^]\vec{a} \cdot \hat{d} = 0 = [\vec{b}\vec{c}\hat{d}], then d^\hat{d} equals :

A

i^+j^2k^6\frac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}

B

i^+j^k^3\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}

C

i^+j^+k^3\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}

D

k^\hat{k}

Answer

±i^+j^2k^6\pm \frac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}

Explanation

Solution

The given conditions are:

  1. ad^=0\vec{a} \cdot \hat{d} = 0: This implies that the unit vector d^\hat{d} is orthogonal to the vector a\vec{a}.
  2. [bcd^]=0[\vec{b}\vec{c}\hat{d}] = 0: This is the scalar triple product of b\vec{b}, c\vec{c}, and d^\hat{d}. A zero scalar triple product means the three vectors are coplanar. This implies that d^\hat{d} is orthogonal to the vector formed by the cross product of b\vec{b} and c\vec{c}, i.e., d^(b×c)\hat{d} \perp (\vec{b} \times \vec{c}).

Given vectors: a=i^j^\vec{a} = \hat{i}-\hat{j} b=j^k^\vec{b} = \hat{j}-\hat{k} c=k^i^\vec{c} = \hat{k}-\hat{i}

First, calculate the cross product b×c\vec{b} \times \vec{c}: b×c=(j^k^)×(k^i^)\vec{b} \times \vec{c} = (\hat{j}-\hat{k}) \times (\hat{k}-\hat{i}) b×c=i^j^k^011101=i^(10)j^(01)+k^(0(1))=i^+j^+k^\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{vmatrix} = \hat{i}(1-0) - \hat{j}(0-1) + \hat{k}(0-(-1)) = \hat{i} + \hat{j} + \hat{k} Let v=b×c=i^+j^+k^\vec{v} = \vec{b} \times \vec{c} = \hat{i} + \hat{j} + \hat{k}.

Now, d^\hat{d} must be orthogonal to both a\vec{a} and v\vec{v}. Therefore, d^\hat{d} must be parallel to the cross product of a\vec{a} and v\vec{v}. Calculate a×v\vec{a} \times \vec{v}: a×v=(i^j^)×(i^+j^+k^)\vec{a} \times \vec{v} = (\hat{i}-\hat{j}) \times (\hat{i}+\hat{j}+\hat{k}) a×v=i^j^k^110111=i^(10)j^(10)+k^(1(1))=i^j^+2k^\vec{a} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = \hat{i}(-1-0) - \hat{j}(1-0) + \hat{k}(1-(-1)) = -\hat{i} - \hat{j} + 2\hat{k}

Since d^\hat{d} is a unit vector, it must be in the direction of a×v\vec{a} \times \vec{v} or its opposite direction, with a magnitude of 1. d^=±i^j^+2k^i^j^+2k^\hat{d} = \pm \frac{-\hat{i} - \hat{j} + 2\hat{k}}{|-\hat{i} - \hat{j} + 2\hat{k}|} The magnitude is: i^j^+2k^=(1)2+(1)2+(2)2=1+1+4=6|-\hat{i} - \hat{j} + 2\hat{k}| = \sqrt{(-1)^2 + (-1)^2 + (2)^2} = \sqrt{1+1+4} = \sqrt{6} So, d^=±i^j^+2k^6=±i^+j^2k^6\hat{d} = \pm \frac{-\hat{i} - \hat{j} + 2\hat{k}}{\sqrt{6}} = \pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}} This matches option (A).