Solveeit Logo

Question

Question: Let $P_n(x)$ be a function satisfying $\sum_{n=0}^{\infty} h^nP_n(x) = (1-2hx+h^2)^{-1/2}, |x| \leq ...

Let Pn(x)P_n(x) be a function satisfying n=0hnPn(x)=(12hx+h2)1/2,x1,h<1/3\sum_{n=0}^{\infty} h^nP_n(x) = (1-2hx+h^2)^{-1/2}, |x| \leq 1, |h| < 1/3. Then the unit digit of, P3(10)P_3(10), is

Answer

5

Explanation

Solution

The given generating function is: n=0hnPn(x)=(12hx+h2)1/2\sum_{n=0}^{\infty} h^nP_n(x) = (1-2hx+h^2)^{-1/2} This is the generating function for Legendre polynomials, Pn(x)P_n(x). We need to find the unit digit of P3(10)P_3(10).

We can find P3(x)P_3(x) by expanding the given generating function using the binomial theorem. Recall the binomial expansion: (1u)1/2=1+12u+123212!u2+12325213!u3+(1-u)^{-1/2} = 1 + \frac{1}{2}u + \frac{1}{2}\frac{3}{2}\frac{1}{2!}u^2 + \frac{1}{2}\frac{3}{2}\frac{5}{2}\frac{1}{3!}u^3 + \dots (1u)1/2=1+12u+38u2+516u3+(1-u)^{-1/2} = 1 + \frac{1}{2}u + \frac{3}{8}u^2 + \frac{5}{16}u^3 + \dots Let u=2hxh2u = 2hx - h^2. Substitute this into the expansion: (12hx+h2)1/2=1+12(2hxh2)+38(2hxh2)2+516(2hxh2)3+(1-2hx+h^2)^{-1/2} = 1 + \frac{1}{2}(2hx-h^2) + \frac{3}{8}(2hx-h^2)^2 + \frac{5}{16}(2hx-h^2)^3 + \dots We are looking for P3(x)P_3(x), which is the coefficient of h3h^3. Let's expand the terms and collect the coefficients of h3h^3:

  1. From the first term: 11 (coefficient of h0h^0)

  2. From the second term: 12(2hxh2)=hx12h2\frac{1}{2}(2hx-h^2) = hx - \frac{1}{2}h^2. No h3h^3 term here.

  3. From the third term: 38(2hxh2)2\frac{3}{8}(2hx-h^2)^2 38(2hxh2)2=38((2hx)22(2hx)(h2)+(h2)2)\frac{3}{8}(2hx-h^2)^2 = \frac{3}{8}((2hx)^2 - 2(2hx)(h^2) + (h^2)^2) =38(4h2x24h3x+h4)= \frac{3}{8}(4h^2x^2 - 4h^3x + h^4) The term with h3h^3 is 38(4h3x)=32h3x\frac{3}{8}(-4h^3x) = -\frac{3}{2}h^3x. So, the coefficient of h3h^3 from this term is 32x-\frac{3}{2}x.

  4. From the fourth term: 516(2hxh2)3\frac{5}{16}(2hx-h^2)^3 516(2hxh2)3=516((2hx)33(2hx)2(h2)+3(2hx)(h2)2(h2)3)\frac{5}{16}(2hx-h^2)^3 = \frac{5}{16}((2hx)^3 - 3(2hx)^2(h^2) + 3(2hx)(h^2)^2 - (h^2)^3) We only need the term with h3h^3. This comes from the first part of the expansion (2hx)3(2hx)^3: 516(2hx)3=516(8h3x3)=52h3x3\frac{5}{16}(2hx)^3 = \frac{5}{16}(8h^3x^3) = \frac{5}{2}h^3x^3 So, the coefficient of h3h^3 from this term is 52x3\frac{5}{2}x^3. Higher terms in the expansion like h4,h5,h6h^4, h^5, h^6 will not contribute to P3(x)P_3(x).

Combining the coefficients of h3h^3 from all terms, we get P3(x)P_3(x): P3(x)=52x332xP_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x P3(x)=12(5x33x)P_3(x) = \frac{1}{2}(5x^3 - 3x)

Now, we need to find P3(10)P_3(10): P3(10)=12(5(10)33(10))P_3(10) = \frac{1}{2}(5(10)^3 - 3(10)) P3(10)=12(5(1000)30)P_3(10) = \frac{1}{2}(5(1000) - 30) P3(10)=12(500030)P_3(10) = \frac{1}{2}(5000 - 30) P3(10)=12(4970)P_3(10) = \frac{1}{2}(4970) P3(10)=2485P_3(10) = 2485 The unit digit of P3(10)P_3(10) is 5.