Solveeit Logo

Question

Question: Let $\hat{a}+2\hat{b}+\hat{c}=\hat{a}\times\hat{c}$ then $|\hat{a}\times\hat{b}+\hat{b}\times\hat{c}...

Let a^+2b^+c^=a^×c^\hat{a}+2\hat{b}+\hat{c}=\hat{a}\times\hat{c} then a^×b^+b^×c^+a^+b^+c^|\hat{a}\times\hat{b}+\hat{b}\times\hat{c}+\hat{a}+\hat{b}+\hat{c}| is equal to

Answer

1

Explanation

Solution

  1. Dot product of given equation with a^\hat{a} and c^\hat{c} gives two equations.

  2. Squaring the given equation yields an equation in a^c^ \hat{a}\cdot\hat{c} (B) leading to B=1B=1.

  3. Then, 2A+1=12A+1=-1 gives A=1A=-1 (and similarly C=1C=-1).

  4. Since B=1B=1, a^\hat{a} and c^\hat{c} are parallel; thus, c^=a^\hat{c} = \hat{a} and b^=a^\hat{b} = -\hat{a}.

  5. Substituting in the target expression gives a^\hat{a} with magnitude 1.