Question
Question: Let $f(x) = \frac{1}{x+1}$ and $f(g(x)) = \frac{x-1}{x}$ then the value of $\int_{2}^{1} g(f(x))\,dx...
Let f(x)=x+11 and f(g(x))=xx−1 then the value of ∫21g(f(x))dx is equal to

A
ln 2
B
1 + ln 2
C
2 + ln 2
D
1 − ln 2
Answer
1 + ln 2
Explanation
Solution
First, find g(x). We are given f(x)=x+11 and f(g(x))=xx−1. Since f(g(x))=g(x)+11, we have g(x)+11=xx−1. This implies g(x)+1=x−1x, so g(x)=x−1x−1=x−1x−(x−1)=x−11.
Next, find g(f(x)). Substitute f(x)=x+11 into g(x)=x−11: g(f(x))=g(x+11)=x+11−11=x+11−(x+1)1=1−x−1x+1=−xx+1=−1−x1.
Now, evaluate the integral ∫21g(f(x))dx: ∫21(−1−x1)dx. Using the property ∫abh(x)dx=−∫bah(x)dx: ∫21(−1−x1)dx=−∫12(−1−x1)dx=∫12(1+x1)dx.
The antiderivative of 1+x1 is x+ln∣x∣. Evaluate the definite integral: [x+ln∣x∣]12=(2+ln∣2∣)−(1+ln∣1∣)=(2+ln2)−(1+0)=1+ln2.
