Solveeit Logo

Question

Question: Let $f(x) = \frac{1}{x+1}$ and $f(g(x)) = \frac{x-1}{x}$ then the value of $\int_{2}^{1} g(f(x))\,dx...

Let f(x)=1x+1f(x) = \frac{1}{x+1} and f(g(x))=x1xf(g(x)) = \frac{x-1}{x} then the value of 21g(f(x))dx\int_{2}^{1} g(f(x))\,dx is equal to

A

ln 2

B

1 + ln 2

C

2 + ln 2

D

1 − ln 2

Answer

1 + ln 2

Explanation

Solution

First, find g(x)g(x). We are given f(x)=1x+1f(x) = \frac{1}{x+1} and f(g(x))=x1xf(g(x)) = \frac{x-1}{x}. Since f(g(x))=1g(x)+1f(g(x)) = \frac{1}{g(x)+1}, we have 1g(x)+1=x1x\frac{1}{g(x)+1} = \frac{x-1}{x}. This implies g(x)+1=xx1g(x)+1 = \frac{x}{x-1}, so g(x)=xx11=x(x1)x1=1x1g(x) = \frac{x}{x-1} - 1 = \frac{x-(x-1)}{x-1} = \frac{1}{x-1}.

Next, find g(f(x))g(f(x)). Substitute f(x)=1x+1f(x) = \frac{1}{x+1} into g(x)=1x1g(x) = \frac{1}{x-1}: g(f(x))=g(1x+1)=11x+11=11(x+1)x+1=x+11x1=x+1x=11xg(f(x)) = g\left(\frac{1}{x+1}\right) = \frac{1}{\frac{1}{x+1} - 1} = \frac{1}{\frac{1 - (x+1)}{x+1}} = \frac{x+1}{1 - x - 1} = \frac{x+1}{-x} = -1 - \frac{1}{x}.

Now, evaluate the integral 21g(f(x))dx\int_{2}^{1} g(f(x))\,dx: 21(11x)dx\int_{2}^{1} \left(-1 - \frac{1}{x}\right)\,dx. Using the property abh(x)dx=bah(x)dx\int_{a}^{b} h(x)\,dx = -\int_{b}^{a} h(x)\,dx: 21(11x)dx=12(11x)dx=12(1+1x)dx\int_{2}^{1} \left(-1 - \frac{1}{x}\right)\,dx = -\int_{1}^{2} \left(-1 - \frac{1}{x}\right)\,dx = \int_{1}^{2} \left(1 + \frac{1}{x}\right)\,dx.

The antiderivative of 1+1x1 + \frac{1}{x} is x+lnxx + \ln|x|. Evaluate the definite integral: [x+lnx]12=(2+ln2)(1+ln1)=(2+ln2)(1+0)=1+ln2\left[x + \ln|x|\right]_{1}^{2} = (2 + \ln|2|) - (1 + \ln|1|) = (2 + \ln 2) - (1 + 0) = 1 + \ln 2.