Question
Question: Let $f(n) = \sum_{k=0}^{n} \binom{n}{k} \cos\bigl(\tfrac{2k\pi}{n}\bigr)$ and $g(n) = \sum_{k=0}^{n-...
Let f(n)=∑k=0n(kn)cos(n2kπ) and g(n)=∑k=0n−1(kn−1)cos(n2kπ), then

A
f(6) is a rational number
B
g(8) is an irrational number
C
f(n) = 2g(n + 2)
D
f(n) = 2g(n)
Answer
A, B, D
Explanation
Solution
1. Expressing sums via complex expansion
Use the identity
Taking real parts with θ=n2π gives
f(n)=ℜ[(1+ei2π/n)n]=ℜ[2ncosn(nπ)eiπ]=−2ncosn(nπ).2. Verifying option (A)
f(6)=−26cos66π=−64(23)6=−64⋅6427=−27,which is rational. ✓
3. Expressing g(n)
Similarly,
Noting cos(n(n−1)π)=−cos(nπ),
g(n)=−2n−1cosn(nπ).4. Verifying option (B)
For n=8,
which is irrational. ✓
5. Relation between f(n) and g(n)
2g(n)=2[−2n−1cosnnπ]=−2ncosnnπ=f(n).So f(n)=2g(n). Option (D) ✓, while (C) fails in general.