Solveeit Logo

Question

Question: Let $f(n) = \sum_{k=0}^{n} \binom{n}{k} \cos\bigl(\tfrac{2k\pi}{n}\bigr)$ and $g(n) = \sum_{k=0}^{n-...

Let f(n)=k=0n(nk)cos(2kπn)f(n) = \sum_{k=0}^{n} \binom{n}{k} \cos\bigl(\tfrac{2k\pi}{n}\bigr) and g(n)=k=0n1(n1k)cos(2kπn)g(n) = \sum_{k=0}^{n-1} \binom{n-1}{k} \cos\bigl(\tfrac{2k\pi}{n}\bigr), then

A

f(6) is a rational number

B

g(8) is an irrational number

C

f(n) = 2g(n + 2)

D

f(n) = 2g(n)

Answer

A, B, D

Explanation

Solution

1. Expressing sums via complex expansion
Use the identity

(1+eiθ)n=k=0n(nk)eikθ=2ncosn ⁣θ2  einθ/2.(1 + e^{i\theta})^n = \sum_{k=0}^n \binom{n}{k} e^{ik\theta} = 2^n \cos^n\!\tfrac{\theta}{2}\;e^{i\,n\theta/2}.

Taking real parts with θ=2πn\theta = \tfrac{2\pi}{n} gives

f(n)=[(1+ei2π/n)n]= ⁣[2ncosn(πn)eiπ]=2ncosn ⁣(πn).f(n) = \Re\bigl[(1+e^{i2\pi/n})^n\bigr] = \Re\!\bigl[2^n \cos^n(\tfrac{\pi}{n}) e^{i\pi}\bigr] = -2^n \cos^n\!\bigl(\tfrac{\pi}{n}\bigr).

2. Verifying option (A)

f(6)=26cos6 ⁣π6=64(32)6=642764=27,f(6) = -2^6 \cos^6\!\tfrac{\pi}{6} = -64\bigl(\tfrac{\sqrt3}{2}\bigr)^6 = -64\cdot\tfrac{27}{64} = -27,

which is rational. ✓

3. Expressing g(n)g(n)
Similarly,

g(n)=[(1+ei2π/n)n1]=2n1cosn1 ⁣(πn)cos ⁣((n1)πn).g(n) = \Re\bigl[(1+e^{i2\pi/n})^{\,n-1}\bigr] =2^{\,n-1}\cos^{\,n-1}\!\bigl(\tfrac{\pi}{n}\bigr)\cos\!\bigl(\tfrac{(n-1)\pi}{n}\bigr).

Noting cos((n1)πn)=cos(πn)\cos\bigl(\tfrac{(n-1)\pi}{n}\bigr)=-\cos(\tfrac{\pi}{n}),

g(n)=2n1cosn ⁣(πn).g(n)=-2^{\,n-1}\cos^n\!\bigl(\tfrac{\pi}{n}\bigr).

4. Verifying option (B)
For n=8n=8,

g(8)=27cos8 ⁣(π8)=128(2+22)8,g(8)=-2^7\cos^8\!\bigl(\tfrac\pi8\bigr) =-128\Bigl(\tfrac{\sqrt{2+\sqrt2}}{2}\Bigr)^8,

which is irrational. ✓

5. Relation between f(n)f(n) and g(n)g(n)

2g(n)=2[2n1cosn ⁣πn]=2ncosn ⁣πn=f(n).2\,g(n)=2\bigl[-2^{n-1}\cos^n\!\tfrac{\pi}{n}\bigr] =-2^n\cos^n\!\tfrac{\pi}{n} =f(n).

So f(n)=2g(n)f(n)=2g(n). Option (D) ✓, while (C) fails in general.