Solveeit Logo

Question

Question: Let $C_1$ and $C_2$ be two curves on the complex plane defined as $C_1: z+\overline{z}=2(|z-1|)$ $C_...

Let C1C_1 and C2C_2 be two curves on the complex plane defined as C1:z+z=2(z1)C_1: z+\overline{z}=2(|z-1|) C2:arg(z+1+i)=αC_2: arg(z+1+i) = \alpha where α(0,π)\alpha \in (0, \pi) such that the curves C1C_1 and C2C_2 touches each other at P(z0)P(z_0) then the value of z02|z_0|^2 is

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

Solution:

Given the curves

C1:z+z=2z1andC2:arg(z+1+i)=α,α(0,π).C_1: z+\overline{z}=2|z-1| \quad\text{and}\quad C_2: \arg(z+1+i)=\alpha, \quad \alpha\in (0,\pi).

Let z=x+iyz=x+iy. Then:

  • For C1C_1:

    z+z=2x,z1=(x1)2+y2.z+\overline{z}=2x, \quad |z-1|=\sqrt{(x-1)^2+y^2}.

    Hence,

    2x=2(x1)2+y2x=(x1)2+y2.2x=2\sqrt{(x-1)^2+y^2}\quad \Longrightarrow\quad x=\sqrt{(x-1)^2+y^2}.

    Squaring both sides:

    x2=(x1)2+y2x2=x22x+1+y2.x^2=(x-1)^2+y^2 \quad\Longrightarrow\quad x^2=x^2-2x+1+y^2.

    Therefore,

    y2+12x=02x=y2+1x=y2+12.y^2+1-2x=0 \quad\Longrightarrow\quad 2x=y^2+1 \quad\Longrightarrow\quad x=\frac{y^2+1}{2}.

    This represents a parabola with equation y2=2x1y^2=2x-1.

  • For C2C_2:
    Write z+1+i=(x+1)+(y+1)iz+1+i=(x+1)+(y+1)i. The condition

    arg(z+1+i)=α\arg(z+1+i)=\alpha

    implies that the point (x,y)(x,y) lies on the straight line

    y+1=tanα(x+1),y+1=\tan\alpha\,(x+1),

    or equivalently,

    y=tanα(x+1)1.y=\tan\alpha\,(x+1)-1.

    Let m=tanαm=\tan\alpha; then C2C_2 is the line

    y=m(x+1)1.y=m(x+1)-1.

Since C1C_1 and C2C_2 touch each other at P(z0)P(z_0), the line is tangent to the parabola y2=2x1y^2=2x-1. Substitute y=m(x+1)1y=m(x+1)-1 into the parabola:

[m(x+1)1]2=2x1.[m(x+1)-1]^2=2x-1.

Expanding,

m2(x+1)22m(x+1)+1=2x1.m^2(x+1)^2-2m(x+1)+1=2x-1.

Express this as a quadratic in xx:

m2x2+[2m22m2]x+(m22m+2)=0.m^2x^2+[2m^2-2m-2]x+(m^2-2m+2)=0.

For tangency, the discriminant must be zero:

Δ=[2m22m2]24m2(m22m+2)=0.\Delta = [2m^2-2m-2]^2-4m^2\,(m^2-2m+2)=0.

Factor out 4:

4[(m2m1)2m2(m22m+2)]=0.4\Big[(m^2 - m -1)^2-m^2(m^2-2m+2)\Big]=0.

Dividing by 4:

(m2m1)2m2(m22m+2)=0.(m^2 - m -1)^2-m^2(m^2-2m+2)=0.

Expanding and simplifying,

m42m3m2+2m+1(m42m3+2m2)=0,m^4-2m^3-m^2+2m+1 - (m^4-2m^3+2m^2)=0, 3m2+2m+1=03m22m1=0.-3m^2+2m+1=0 \quad\Longrightarrow\quad 3m^2-2m-1=0.

Solving,

m=2±4+126=2±46.m=\frac{2\pm \sqrt{4+12}}{6}=\frac{2\pm4}{6}.

Thus, m=1m=1 or m=13m=-\frac{1}{3}. Since α(0,π)\alpha \in (0, \pi) gives tanα>0\tan \alpha > 0, we take m=1m=1 which implies α=π4\alpha=\frac{\pi}{4}.

Now, with m=1m=1, the line C2C_2 becomes:

y=1(x+1)1=x.y=1\cdot (x+1)-1=x.

Substitute y=xy=x in the parabola:

x2=2x1x22x+1=0(x1)2=0.x^2=2x-1\quad \Longrightarrow\quad x^2-2x+1=0\quad \Longrightarrow\quad (x-1)^2=0.

So, x=1x=1 and y=1y=1. That is,

z0=1+i.z_0=1+i.

Then,

z02=12+12=2.|z_0|^2=1^2+1^2=2.

Explanation of the minimal solution:

  1. Convert C1C_1 to a parabola y2=2x1y^2=2x-1.
  2. Express C2C_2 as the line y=tanα(x+1)1y=\tan\alpha (x+1)-1.
  3. Use tangency condition (discriminant = 0) to find tanα=1\tan\alpha=1.
  4. Find the point of tangency (x,y)=(1,1)(x,y)=(1,1) so that z0=1+iz_0=1+i.
  5. Therefore, z02=2|z_0|^2=2.