Question
Question: Let $0 < A, B < \frac{\pi}{2}$ satisfying the equalities $3 \sin^2 A + 2 \sin^2 B = 1$ and $3\sin2A ...
Let 0<A,B<2π satisfying the equalities 3sin2A+2sin2B=1 and 3sin2A−2sin2B=0. Then A+2B=:

4π
3π
2π
None of these.
2π
Solution
The given equations are:
- 3sin2A+2sin2B=1
- 3sin2A−2sin2B=0
From (2), 3sin2A=2sin2B.
Using sin2x=21−cos2x, equation (1) becomes: 3(21−cos2A)+2(21−cos2B)=1 23−23cos2A+1−cos2B=1 25−23cos2A−cos2B=1 23=23cos2A+cos2B 3=3cos2A+2cos2B (Equation 1')
From (2), 3sin2A=2sin2B. Squaring both sides: 9sin22A=4sin22B 9(1−cos22A)=4(1−cos22B) 9−9cos22A=4−4cos22B 5=9cos22A−4cos22B (Equation 2')
Let's test the option A+2B=2π. This implies A=2π−2B. Then 2A=π−4B. cos2A=cos(π−4B)=−cos4B=−(2cos22B−1)=1−2cos22B. sin2A=sin(π−4B)=sin4B=2sin2Bcos2B.
Substitute into 3sin2A=2sin2B: 3(2sin2Bcos2B)=2sin2B Since 0<B<2π, sin2B=0. 6cos2B=2⟹cos2B=31.
Now find cos2A using cos2B=31: cos2A=1−2cos22B=1−2(31)2=1−2(91)=1−92=97.
Check with equation (1'): 3cos2A+2cos2B=3(97)+2(31)=37+32=39=3. This is consistent. The ranges 0<A,B<2π are also satisfied.