Solveeit Logo

Question

Question: $\int \frac{1}{x^4+1}dx$...

1x4+1dx\int \frac{1}{x^4+1}dx

Answer

142ln(x2+2x+1x22x+1)+122arctan(2x+1)+122arctan(2x1)+C\frac{1}{4\sqrt{2}} \ln\left(\frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1}\right) + \frac{1}{2\sqrt{2}} \arctan(\sqrt{2}x+1) + \frac{1}{2\sqrt{2}} \arctan(\sqrt{2}x-1) + C

Explanation

Solution

To integrate 1x4+1dx\int \frac{1}{x^4+1}dx, we can use the technique of partial fraction decomposition.

First, factor the denominator x4+1x^4+1: x4+1=(x2+1)2(x2)2=(x2x2+1)(x2+x2+1)x^4+1 = (x^2+1)^2 - (x\sqrt{2})^2 = (x^2 - x\sqrt{2} + 1)(x^2 + x\sqrt{2} + 1).

Now, decompose the integrand into partial fractions: 1x4+1=Ax+Bx22x+1+Cx+Dx2+2x+1\frac{1}{x^4+1} = \frac{Ax+B}{x^2 - \sqrt{2}x + 1} + \frac{Cx+D}{x^2 + \sqrt{2}x + 1}

Multiplying both sides by (x22x+1)(x2+2x+1)(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1), we get: 1=(Ax+B)(x2+2x+1)+(Cx+D)(x22x+1)1 = (Ax+B)(x^2 + \sqrt{2}x + 1) + (Cx+D)(x^2 - \sqrt{2}x + 1)

Expand and collect terms by powers of xx: 1=(A+C)x3+(2A+B2C+D)x2+(A+2B+C2D)x+(B+D)1 = (A+C)x^3 + (\sqrt{2}A+B-\sqrt{2}C+D)x^2 + (A+\sqrt{2}B+C-\sqrt{2}D)x + (B+D)

Comparing coefficients:

  1. Coefficient of x3x^3: A+C=0    C=AA+C = 0 \implies C = -A
  2. Coefficient of x2x^2: 2A+B2C+D=0\sqrt{2}A+B-\sqrt{2}C+D = 0
  3. Coefficient of xx: A+2B+C2D=0A+\sqrt{2}B+C-\sqrt{2}D = 0
  4. Constant term: B+D=1B+D = 1

From (1) and (3): A+2BA2D=0    2B2D=0    B=DA+\sqrt{2}B-A-\sqrt{2}D = 0 \implies \sqrt{2}B-\sqrt{2}D = 0 \implies B=D. Substitute B=DB=D into (4): B+B=1    2B=1    B=1/2B+B=1 \implies 2B=1 \implies B=1/2. So D=1/2D=1/2. Substitute C=AC=-A, B=1/2B=1/2, D=1/2D=1/2 into (2): 2A+1/22(A)+1/2=0    22A+1=0    A=122=24\sqrt{2}A+1/2-\sqrt{2}(-A)+1/2 = 0 \implies 2\sqrt{2}A+1 = 0 \implies A = -\frac{1}{2\sqrt{2}} = -\frac{\sqrt{2}}{4}. Since C=AC=-A, C=24C = \frac{\sqrt{2}}{4}.

So the decomposition is: 1x4+1=24x+12x22x+1+24x+12x2+2x+1\frac{1}{x^4+1} = \frac{-\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 - \sqrt{2}x + 1} + \frac{\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 + \sqrt{2}x + 1} =14(2x+2x22x+1+2x+2x2+2x+1)= \frac{1}{4} \left( \frac{-\sqrt{2}x + 2}{x^2 - \sqrt{2}x + 1} + \frac{\sqrt{2}x + 2}{x^2 + \sqrt{2}x + 1} \right)

Now, we integrate each term. For the first term, let I1=2x+2x22x+1dxI_1 = \int \frac{-\sqrt{2}x+2}{x^2 - \sqrt{2}x + 1} dx. The derivative of the denominator is 2x22x-\sqrt{2}. We rewrite the numerator: 2x+2=12(2x2)+1-\sqrt{2}x+2 = -\frac{1}{\sqrt{2}}(2x-\sqrt{2}) + 1. I1=(122x2x22x+1+1x22x+1)dxI_1 = \int \left( -\frac{1}{\sqrt{2}} \frac{2x-\sqrt{2}}{x^2 - \sqrt{2}x + 1} + \frac{1}{x^2 - \sqrt{2}x + 1} \right) dx I1=12ln(x22x+1)+1(x22)2+(12)2dxI_1 = -\frac{1}{\sqrt{2}} \ln(x^2 - \sqrt{2}x + 1) + \int \frac{1}{(x - \frac{\sqrt{2}}{2})^2 + (\frac{1}{\sqrt{2}})^2} dx I1=12ln(x22x+1)+11/2arctan(x221/2)I_1 = -\frac{1}{\sqrt{2}} \ln(x^2 - \sqrt{2}x + 1) + \frac{1}{1/\sqrt{2}} \arctan\left(\frac{x - \frac{\sqrt{2}}{2}}{1/\sqrt{2}}\right) I1=12ln(x22x+1)+2arctan(2x1)I_1 = -\frac{1}{\sqrt{2}} \ln(x^2 - \sqrt{2}x + 1) + \sqrt{2} \arctan(\sqrt{2}x - 1)

For the second term, let I2=2x+2x2+2x+1dxI_2 = \int \frac{\sqrt{2}x+2}{x^2 + \sqrt{2}x + 1} dx. The derivative of the denominator is 2x+22x+\sqrt{2}. We rewrite the numerator: 2x+2=12(2x+2)+1\sqrt{2}x+2 = \frac{1}{\sqrt{2}}(2x+\sqrt{2}) + 1. I2=(122x+2x2+2x+1+1x2+2x+1)dxI_2 = \int \left( \frac{1}{\sqrt{2}} \frac{2x+\sqrt{2}}{x^2 + \sqrt{2}x + 1} + \frac{1}{x^2 + \sqrt{2}x + 1} \right) dx I2=12ln(x2+2x+1)+1(x+22)2+(12)2dxI_2 = \frac{1}{\sqrt{2}} \ln(x^2 + \sqrt{2}x + 1) + \int \frac{1}{(x + \frac{\sqrt{2}}{2})^2 + (\frac{1}{\sqrt{2}})^2} dx I2=12ln(x2+2x+1)+11/2arctan(x+221/2)I_2 = \frac{1}{\sqrt{2}} \ln(x^2 + \sqrt{2}x + 1) + \frac{1}{1/\sqrt{2}} \arctan\left(\frac{x + \frac{\sqrt{2}}{2}}{1/\sqrt{2}}\right) I2=12ln(x2+2x+1)+2arctan(2x+1)I_2 = \frac{1}{\sqrt{2}} \ln(x^2 + \sqrt{2}x + 1) + \sqrt{2} \arctan(\sqrt{2}x + 1)

Combining I1I_1 and I2I_2: 1x4+1dx=14(I1+I2)\int \frac{1}{x^4+1}dx = \frac{1}{4}(I_1 + I_2) =14[12ln(x22x+1)+2arctan(2x1)+12ln(x2+2x+1)+2arctan(2x+1)]+C= \frac{1}{4} \left[ -\frac{1}{\sqrt{2}} \ln(x^2 - \sqrt{2}x + 1) + \sqrt{2} \arctan(\sqrt{2}x - 1) + \frac{1}{\sqrt{2}} \ln(x^2 + \sqrt{2}x + 1) + \sqrt{2} \arctan(\sqrt{2}x + 1) \right] + C =14[12(ln(x2+2x+1)ln(x22x+1))+2(arctan(2x+1)+arctan(2x1))]+C= \frac{1}{4} \left[ \frac{1}{\sqrt{2}} \left( \ln(x^2 + \sqrt{2}x + 1) - \ln(x^2 - \sqrt{2}x + 1) \right) + \sqrt{2} \left( \arctan(\sqrt{2}x + 1) + \arctan(\sqrt{2}x - 1) \right) \right] + C =142ln(x2+2x+1x22x+1)+24(arctan(2x+1)+arctan(2x1))+C= \frac{1}{4\sqrt{2}} \ln\left(\frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1}\right) + \frac{\sqrt{2}}{4} \left( \arctan(\sqrt{2}x + 1) + \arctan(\sqrt{2}x - 1) \right) + C

This can also be written as: =142ln(x2+2x+1x22x+1)+122arctan(2x1x2)+C= \frac{1}{4\sqrt{2}} \ln\left(\frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1}\right) + \frac{1}{2\sqrt{2}} \arctan\left(\frac{\sqrt{2}x}{1-x^2}\right) + C' (using arctanA+arctanB=arctan(A+B1AB)\arctan A + \arctan B = \arctan\left(\frac{A+B}{1-AB}\right))

Or, using the alternative decomposition method: 1x4+1dx=122arctan(x212x)+142ln(x2+2x+1x22x+1)+C\int \frac{1}{x^4+1}dx = \frac{1}{2\sqrt{2}} \arctan\left(\frac{x^2-1}{\sqrt{2}x}\right) + \frac{1}{4\sqrt{2}} \ln\left(\frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}\right) + C. Both forms are equivalent.

Explanation of the solution:

  1. Factor the denominator: The denominator x4+1x^4+1 is factored into two irreducible quadratic factors: (x22x+1)(x^2 - \sqrt{2}x + 1) and (x2+2x+1)(x^2 + \sqrt{2}x + 1).

  2. Partial Fraction Decomposition: The integrand 1x4+1\frac{1}{x^4+1} is decomposed into partial fractions of the form Ax+Bx22x+1+Cx+Dx2+2x+1\frac{Ax+B}{x^2 - \sqrt{2}x + 1} + \frac{Cx+D}{x^2 + \sqrt{2}x + 1}. The coefficients A,B,C,DA, B, C, D are found by comparing coefficients after cross-multiplication.

  3. Integration of terms: Each resulting fraction is integrated separately.

    • For terms of the form px+qax2+bx+cdx\int \frac{px+q}{ax^2+bx+c}dx, the numerator is split into two parts: one proportional to the derivative of the denominator (2ax+b2ax+b) and the other a constant.
    • The first part integrates to a logarithmic term: k(2ax+b)ax2+bx+cdx=klnax2+bx+c\int \frac{k(2ax+b)}{ax^2+bx+c}dx = k \ln|ax^2+bx+c|.
    • The second part integrates to an arctangent term: max2+bx+cdx\int \frac{m}{ax^2+bx+c}dx. The denominator is completed to a square a(x+b/2a)2+(cb2/4a)a(x+b/2a)^2 + (c - b^2/4a) and then integrated using the formula 1u2+k2du=1karctan(uk)\int \frac{1}{u^2+k^2}du = \frac{1}{k}\arctan(\frac{u}{k}).
  4. Combine results: The results from integrating each partial fraction are combined to get the final integral.