Solveeit Logo

Question

Question: If $|z_1|=1, |z_2|=2, |z_3|=3 \text{ and } |9z_1z_2+4z_1z_3+z_2z_3|=36$, then $|z_1+z_2+z_3|$ is equ...

If z1=1,z2=2,z3=3 and 9z1z2+4z1z3+z2z3=36|z_1|=1, |z_2|=2, |z_3|=3 \text{ and } |9z_1z_2+4z_1z_3+z_2z_3|=36, then z1+z2+z3|z_1+z_2+z_3| is equal to

A

Z2

B

26~2

C
D

6

Answer

6 (Option d)

Explanation

Solution

Explanation:
Given

9z1z2+4z1z3+z2z3=36,|9z_1z_2+4z_1z_3+z_2z_3| = 36,

note that 9=z329=|z_3|^2, 4=z224=|z_2|^2, and 1=z121=|z_1|^2. Rewriting the expression, we have

9z1z2+4z1z3+z2z3=z1z2z3(z1+z2+z3).9z_1z_2+4z_1z_3+z_2z_3 = z_1z_2z_3\left(\overline{z_1}+\overline{z_2}+\overline{z_3}\right).

Taking moduli gives

z1z2z3z1+z2+z3=z1z2z3z1+z2+z3=6z1+z2+z3.|z_1z_2z_3|\cdot|\overline{z_1}+\overline{z_2}+\overline{z_3}| = |z_1||z_2||z_3|\cdot|z_1+z_2+z_3| = 6|z_1+z_2+z_3|.

Since z1=1|z_1|=1, z2=2|z_2|=2, and z3=3|z_3|=3 we have

6z1+z2+z3=36z1+z2+z3=366=6.6|z_1+z_2+z_3| = 36 \quad\Rightarrow\quad |z_1+z_2+z_3| = \frac{36}{6} = 6.