Question
Question: If $|z_1|=1, |z_2|=2, |z_3|=3 \text{ and } |9z_1z_2+4z_1z_3+z_2z_3|=36$, then $|z_1+z_2+z_3|$ is equ...
If ∣z1∣=1,∣z2∣=2,∣z3∣=3 and ∣9z1z2+4z1z3+z2z3∣=36, then ∣z1+z2+z3∣ is equal to
A
Z2
B
26~2
C
D
6
Answer
6 (Option d)
Explanation
Solution
Explanation:
Given
note that 9=∣z3∣2, 4=∣z2∣2, and 1=∣z1∣2. Rewriting the expression, we have
9z1z2+4z1z3+z2z3=z1z2z3(z1+z2+z3).Taking moduli gives
∣z1z2z3∣⋅∣z1+z2+z3∣=∣z1∣∣z2∣∣z3∣⋅∣z1+z2+z3∣=6∣z1+z2+z3∣.Since ∣z1∣=1, ∣z2∣=2, and ∣z3∣=3 we have
6∣z1+z2+z3∣=36⇒∣z1+z2+z3∣=636=6.