Solveeit Logo

Question

Question: Calculate the value of -U/100, for AB(s), from following data of Born-Haber's cycle. [where U is lat...

Calculate the value of -U/100, for AB(s), from following data of Born-Haber's cycle. [where U is lattice energy in kJ/mol]

A

8.13

B

7.37

C

-8.13

D

-7.37

Answer

8.13

Explanation

Solution

The Born-Haber cycle relates the enthalpy of formation (ΔHf\Delta H_f) of an ionic compound to various thermodynamic quantities. According to Hess's Law, the sum of the enthalpy changes for the steps in the cycle equals the overall enthalpy change.

The steps involved in the formation of AB(s) are:

  1. Atomization of A: A(s) \rightarrow A(g)
  2. Ionization of A: A(g) \rightarrow A+^{+}(g) + e^- (Ionization Energy, IE)
  3. Dissociation of B2_2: 12\frac{1}{2}B2_2(g) \rightarrow B(g) (Dissociation Enthalpy, ΔHD\Delta H_D)
  4. Electron Affinity of B: B(g) + e^- \rightarrow B^{-}(g) (Electron Affinity, EA)
  5. Lattice Formation: A+^{+}(g) + B^{-}(g) \rightarrow AB(s) (Lattice Energy, U)

The overall enthalpy of formation is given by: ΔHf=(ΔHatom,A+IE)+ΔHD+EA+U\Delta H_f = (\Delta H_{atom, A} + IE) + \Delta H_D + EA + U

From the provided Born-Haber cycle diagram:

  • Enthalpy of formation, ΔHf=424\Delta H_f = -424 kJ/mol.
  • Energy to get A into gaseous ionic state A+^{+}(g) from A(s) = 495 kJ/mol (This represents ΔHatom,A+IE\Delta H_{atom, A} + IE).
  • Dissociation Enthalpy, ΔHD=242\Delta H_D = 242 kJ/mol.
  • Electron Affinity, EA = -348 kJ/mol.

Substituting the values into the equation: 424 kJ/mol=495 kJ/mol+242 kJ/mol+(348 kJ/mol)+U-424 \text{ kJ/mol} = 495 \text{ kJ/mol} + 242 \text{ kJ/mol} + (-348 \text{ kJ/mol}) + U 424=495+242348+U-424 = 495 + 242 - 348 + U 424=737348+U-424 = 737 - 348 + U 424=389+U-424 = 389 + U

Solving for the Lattice Energy, U: U=424389U = -424 - 389 U=813U = -813 kJ/mol

The question asks to calculate the value of -U/100. Value = (813 kJ/mol)/100-(-813 \text{ kJ/mol}) / 100 Value = 813/100813 / 100 Value = 8.138.13

The numerical value is 8.138.13, which is already in two decimal places.