Solveeit Logo

Question

Question: If $f(x)=\frac{2^{2x}}{2^{2x}+2}, x\in R$, then $f(\frac{1}{2023})+f(\frac{2}{2023})+...+f(\frac{202...

If f(x)=22x22x+2,xRf(x)=\frac{2^{2x}}{2^{2x}+2}, x\in R, then f(12023)+f(22023)+...+f(20222023)f(\frac{1}{2023})+f(\frac{2}{2023})+...+f(\frac{2022}{2023}) is equal to:

A

2011

B

2010

C

1010

D

101

Answer

1010

Explanation

Solution

Let f(x)=22x22x+2f(x)=\frac{2^{2x}}{2^{2x}+2}. We observe that f(x)+f(1x)=22x22x+2+22(1x)22(1x)+2f(x)+f(1-x) = \frac{2^{2x}}{2^{2x}+2} + \frac{2^{2(1-x)}}{2^{2(1-x)}+2}. f(1x)=222x222x+2=422x422x+2f(1-x) = \frac{2^{2-2x}}{2^{2-2x}+2} = \frac{4 \cdot 2^{-2x}}{4 \cdot 2^{-2x}+2}. Multiplying numerator and denominator by 22x2^{2x}: f(1x)=44+222x=22+22xf(1-x) = \frac{4}{4+2 \cdot 2^{2x}} = \frac{2}{2+2^{2x}}. So, f(x)+f(1x)=22x22x+2+222x+2=22x+222x+2=1f(x)+f(1-x) = \frac{2^{2x}}{2^{2x}+2} + \frac{2}{2^{2x}+2} = \frac{2^{2x}+2}{2^{2x}+2} = 1.

The sum is S=f(12023)+f(22023)+...+f(20222023)S = f(\frac{1}{2023})+f(\frac{2}{2023})+...+f(\frac{2022}{2023}). Let n=2023n=2023. The sum is k=1n1f(kn)\sum_{k=1}^{n-1} f(\frac{k}{n}). We can pair the terms: f(kn)+f(nkn)=f(kn)+f(1kn)=1f(\frac{k}{n}) + f(\frac{n-k}{n}) = f(\frac{k}{n}) + f(1-\frac{k}{n}) = 1. There are n1=2022n-1 = 2022 terms. The number of pairs is n12=20222=1011\frac{n-1}{2} = \frac{2022}{2} = 1011. Each pair sums to 1. Therefore, the total sum is 1011×1=10111011 \times 1 = 1011.

However, 1011 is not an option. This suggests a potential typo in the question or options. If we assume the question intended the sum to be up to f(20202021)f(\frac{2020}{2021}), then n=2021n=2021. The sum would be k=12020f(k2021)\sum_{k=1}^{2020} f(\frac{k}{2021}). Number of terms = 2020. Number of pairs = 20202=1010\frac{2020}{2} = 1010. Each pair sums to 1. Total sum = 1010×1=10101010 \times 1 = 1010. This matches option (3). Assuming this intended question, the answer is 1010.