Question
Question: If $\begin{vmatrix} \sin 3A & \sin 2A & \sin A\\ \sin 3B & \sin 2B & \sin B\\ \sin 3C & \sin 2C & \s...
If sin3Asin3Bsin3Csin2Asin2Bsin2CsinAsinBsinC=λsinAsinBsinCsin2A+Bsin2A+Csin2B+Csin2A−Bsin2B−Csin2C−A,
then the value of λ will be-

32
64
-64
128
64
Solution
The problem requires us to find the value of λ by evaluating the given determinant and comparing it with the provided expression.
The given determinant is: D=sin3Asin3Bsin3Csin2Asin2Bsin2CsinAsinBsinC
Step 1: Factor out sinA,sinB,sinC from rows.
We can take sinA common from the first row, sinB from the second row, and sinC from the third row. D=sinAsinBsinCsinAsin3AsinBsin3BsinCsin3CsinAsin2AsinBsin2BsinCsin2C111
Step 2: Apply trigonometric identities.
We use the identities: sinxsin3x=sinx3sinx−4sin3x=3−4sin2x sinxsin2x=sinx2sinxcosx=2cosx
Substitute these into the determinant: D=sinAsinBsinC3−4sin2A3−4sin2B3−4sin2C2cosA2cosB2cosC111
Step 3: Further simplify the first column using sin2x=21−cos2x.
3−4sin2x=3−4(21−cos2x)=3−2(1−cos2x)=3−2+2cos2x=1+2cos2x.
So the determinant becomes: D=sinAsinBsinC1+2cos2A1+2cos2B1+2cos2C2cosA2cosB2cosC111
Step 4: Apply column operation C1→C1−C3.
D=sinAsinBsinC(1+2cos2A)−1(1+2cos2B)−1(1+2cos2C)−12cosA2cosB2cosC111 D=sinAsinBsinC2cos2A2cos2B2cos2C2cosA2cosB2cosC111
Step 5: Factor out constants from columns.
Take 2 common from C1 and 2 common from C2. D=sinAsinBsinC⋅2⋅2cos2Acos2Bcos2CcosAcosBcosC111 D=4sinAsinBsinCcos2Acos2Bcos2CcosAcosBcosC111
Step 6: Apply cos2x=2cos2x−1.
D=4sinAsinBsinC2cos2A−12cos2B−12cos2C−1cosAcosBcosC111
Step 7: Apply column operation C1→C1+C3.
D=4sinAsinBsinC(2cos2A−1)+1(2cos2B−1)+1(2cos2C−1)+1cosAcosBcosC111 D=4sinAsinBsinC2cos2A2cos2B2cos2CcosAcosBcosC111
Step 8: Factor out constant from C1.
Take 2 common from C1. D=4sinAsinBsinC⋅2cos2Acos2Bcos2CcosAcosBcosC111 D=8sinAsinBsinCcos2Acos2Bcos2CcosAcosBcosC111
Step 9: Evaluate the Vandermonde-like determinant.
The determinant x2y2z2xyz111 evaluates to (x−y)(y−z)(x−z). Here, x=cosA, y=cosB, z=cosC. So, cos2Acos2Bcos2CcosAcosBcosC111=(cosA−cosB)(cosB−cosC)(cosA−cosC).
Substitute this back into the expression for D: D=8sinAsinBsinC(cosA−cosB)(cosB−cosC)(cosA−cosC)
Step 10: Convert differences of cosines into products of sines.
Using the sum-to-product formula cosX−cosY=−2sin2X+Ysin2X−Y: cosA−cosB=−2sin2A+Bsin2A−B cosB−cosC=−2sin2B+Csin2B−C cosA−cosC=−2sin2A+Csin2A−C
Substitute these into the expression for D: D=8sinAsinBsinC(−2sin2A+Bsin2A−B)(−2sin2B+Csin2B−C)(−2sin2A+Csin2A−C) D=8⋅(−2)3sinAsinBsinCsin2A+Bsin2A−Bsin2B+Csin2B−Csin2A+Csin2A−C D=8⋅(−8)sinAsinBsinCsin2A+Bsin2B+Csin2A+Csin2A−Bsin2B−Csin2A−C D=−64sinAsinBsinCsin2A+Bsin2B+Csin2A+Csin2A−Bsin2B−Csin2A−C
Step 11: Compare with the given expression.
The given expression for D is: λsinAsinBsinCsin2A+Bsin2A+Csin2B+Csin2A−Bsin2B−Csin2C−A
We have sin2A−C=−sin2C−A. Substitute this into our derived expression for D: D=−64sinAsinBsinCsin2A+Bsin2B+Csin2A+Csin2A−Bsin2B−C(−sin2C−A) D=64sinAsinBsinCsin2A+Bsin2B+Csin2A+Csin2A−Bsin2B−Csin2C−A
Comparing this with the given expression, we find that λ=64.