Solveeit Logo

Question

Question: If $\alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1}$ $^{12}C_{2r-1}$, then the distance of the point $(12, \s...

If α=1+r=16(3)r1\alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} 12C2r1^{12}C_{2r-1}, then the distance of the point (12,3)(12, \sqrt{3}) from the line αx3y+1=0\alpha x - \sqrt{3}y+1=0 is __.

Answer

5

Explanation

Solution

Given

α=1+r=16(3)r1(122r1).\alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} \binom{12}{2r-1}.

Substitute r1=sr-1 = s so that ss changes from 0 to 5. Then,

α=1+s=05(3)s(122s+1).\alpha = 1 + \sum_{s=0}^{5} (-3)^s \binom{12}{2s+1}.

Notice that

(3)s=(1)s3s.(-3)^s = (-1)^s3^s.

Now, consider the expansion of

(1+i3)12=k=012(12k)(i3)k.(1 + i\sqrt{3})^{12} = \sum_{k=0}^{12} \binom{12}{k}(i\sqrt{3})^k.

Separate the sum into even and odd terms:

  • For even k=2rk=2r: (i3)2r=(i2)r(3)r=(1)r3r(real).(i\sqrt{3})^{2r} = (i^2)^r (3)^r = (-1)^r 3^r \quad \text{(real)}.
  • For odd k=2r+1k=2r+1: (i3)2r+1=i3(i2)r3r=i3(1)r3r(imaginary).(i\sqrt{3})^{2r+1} = i\sqrt{3}\,(i^2)^r3^r = i\sqrt{3}\,(-1)^r3^r \quad \text{(imaginary)}.

So the imaginary part of the expansion is:

3r=05(122r+1)(1)r3r.\sqrt{3} \sum_{r=0}^{5} \binom{12}{2r+1} (-1)^r3^r.

But note that

1+i3=2(cosπ3+isinπ3),1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right),

so

(1+i3)12=212(cos4π+isin4π)=4096.(1 + i\sqrt{3})^{12} = 2^{12}\left(\cos 4\pi+i\sin 4\pi\right) = 4096.

Since the result is real, the imaginary part must equal zero:

3r=05(122r+1)(1)r3r=0r=05(122r+1)(1)r3r=0.\sqrt{3} \sum_{r=0}^{5} \binom{12}{2r+1} (-1)^r3^r = 0 \quad\Longrightarrow\quad \sum_{r=0}^{5} \binom{12}{2r+1} (-1)^r3^r=0.

This sum is exactly the one in α\alpha:

α=1+r=05(122r+1)(3)r=1+0=1.\alpha = 1 + \sum_{r=0}^{5} \binom{12}{2r+1}(-3)^r = 1 + 0 = 1.

Now, the distance dd from the point (12,3)(12,\, \sqrt{3}) to the line

αx3y+1=0\alpha x - \sqrt{3}y + 1=0

with α=1\alpha=1 becomes:

d=11233+112+(3)2=123+11+3=102=5.d = \frac{|1\cdot12 - \sqrt{3}\cdot\sqrt{3} +1|}{\sqrt{1^2+(-\sqrt{3})^2}} = \frac{|12 - 3 + 1|}{\sqrt{1+3}} = \frac{10}{2} = 5.