Question
Question: If $\alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1}$ $^{12}C_{2r-1}$, then the distance of the point $(12, \s...
If α=1+∑r=16(−3)r−1 12C2r−1, then the distance of the point (12,3) from the line αx−3y+1=0 is __.
Answer
5
Explanation
Solution
Given
α=1+r=1∑6(−3)r−1(2r−112).Substitute r−1=s so that s changes from 0 to 5. Then,
α=1+s=0∑5(−3)s(2s+112).Notice that
(−3)s=(−1)s3s.Now, consider the expansion of
(1+i3)12=k=0∑12(k12)(i3)k.Separate the sum into even and odd terms:
- For even k=2r: (i3)2r=(i2)r(3)r=(−1)r3r(real).
- For odd k=2r+1: (i3)2r+1=i3(i2)r3r=i3(−1)r3r(imaginary).
So the imaginary part of the expansion is:
3r=0∑5(2r+112)(−1)r3r.But note that
1+i3=2(cos3π+isin3π),so
(1+i3)12=212(cos4π+isin4π)=4096.Since the result is real, the imaginary part must equal zero:
3r=0∑5(2r+112)(−1)r3r=0⟹r=0∑5(2r+112)(−1)r3r=0.This sum is exactly the one in α:
α=1+r=0∑5(2r+112)(−3)r=1+0=1.Now, the distance d from the point (12,3) to the line
αx−3y+1=0with α=1 becomes:
d=12+(−3)2∣1⋅12−3⋅3+1∣=1+3∣12−3+1∣=210=5.