Solveeit Logo

Question

Question: If $a_i > 0$ (i = 1, 2, 3, …, n), prove that $\sum_{1 \leq i < j \leq n} \sqrt{a_i a_j} \leq \frac{n...

If ai>0a_i > 0 (i = 1, 2, 3, …, n), prove that 1i<jnaiajn12(a1+a2+...+an)\sum_{1 \leq i < j \leq n} \sqrt{a_i a_j} \leq \frac{n-1}{2} (a_1 + a_2 + ... + a_n)

Answer

To prove the inequality, we apply the AM-GM inequality to each pair (ai,aj)(a_i, a_j), sum over all relevant pairs, simplify the right-hand side, and substitute back into the inequality.

Explanation

Solution

The proof uses the AM-GM inequality, xyx+y2\sqrt{xy} \leq \frac{x+y}{2}, applied to each pair (ai,aj)(a_i, a_j). Summing these inequalities for all 1i<jn1 \leq i < j \leq n terms, the left side becomes aiaj\sum \sqrt{a_i a_j}. The right side becomes ai+aj2\sum \frac{a_i+a_j}{2}. In the sum (ai+aj)\sum (a_i+a_j), each aka_k appears exactly (n1)(n-1) times, leading to (n1)ak(n-1)\sum a_k. This directly yields the desired inequality.

Steps:

  1. Apply AM-GM Inequality: aiajai+aj2\sqrt{a_i a_j} \leq \frac{a_i + a_j}{2}

  2. Sum over all pairs: 1i<jnaiaj1i<jnai+aj2\sum_{1 \leq i < j \leq n} \sqrt{a_i a_j} \leq \sum_{1 \leq i < j \leq n} \frac{a_i + a_j}{2}

  3. Simplify RHS: Analyze how many times each aka_k appears in the sum. aka_k appears (nk)(n-k) times in sums (ak+aj)(a_k + a_j) where j>kj > k, and (k1)(k-1) times in sums (ai+ak)(a_i + a_k) where i<ki < k. Therefore, aka_k appears (n1)(n-1) times.

  4. Substitute: 1i<jnaiaj12(n1)(a1+a2+...+an)\sum_{1 \leq i < j \leq n} \sqrt{a_i a_j} \leq \frac{1}{2} (n-1) (a_1 + a_2 + ... + a_n), leading to the desired inequality.