Solveeit Logo

Question

Question: If a, b, c are integers such that $|a - b|^{19} + |c-a|^{19}=1$, find the value of $| c -a | + |a-b|...

If a, b, c are integers such that ab19+ca19=1|a - b|^{19} + |c-a|^{19}=1, find the value of ca+ab+bc| c -a | + |a-b| + |b-c|

A

2

B

3

C

1

D

4

Answer

2

Explanation

Solution

Let X=abX = |a - b| and Y=caY = |c - a|. Since a,b,ca, b, c are integers, XX and YY must be non-negative integers. The given equation is X19+Y19=1X^{19} + Y^{19} = 1. The only non-negative integer solutions are (X,Y)=(0,1)(X, Y) = (0, 1) or (X,Y)=(1,0)(X, Y) = (1, 0). We know that (ab)+(bc)+(ca)=0(a-b) + (b-c) + (c-a) = 0. Let u=abu = a-b and w=caw = c-a. Then bc=(u+w)b-c = -(u+w). So, bc=(u+w)=u+w|b-c| = |-(u+w)| = |u+w|.

Case 1: ab=0|a - b| = 0 and ca=1|c - a| = 1. Then bc=0+(ca)=ca=1|b-c| = |0 + (c-a)| = |c-a| = 1. The sum is ca+ab+bc=1+0+1=2|c-a| + |a-b| + |b-c| = 1 + 0 + 1 = 2.

Case 2: ab=1|a - b| = 1 and ca=0|c - a| = 0. Then bc=(ab)+0=ab=1|b-c| = |(a-b) + 0| = |a-b| = 1. The sum is ca+ab+bc=0+1+1=2|c-a| + |a-b| + |b-c| = 0 + 1 + 1 = 2. In both cases, the sum is 2.