Question
Question: If a, b, c are integers such that $|a - b|^{19} + |c-a|^{19}=1$, find the value of $| c -a | + |a-b|...
If a, b, c are integers such that ∣a−b∣19+∣c−a∣19=1, find the value of ∣c−a∣+∣a−b∣+∣b−c∣

A
2
B
3
C
1
D
4
Answer
2
Explanation
Solution
Let X=∣a−b∣ and Y=∣c−a∣. Since a,b,c are integers, X and Y must be non-negative integers. The given equation is X19+Y19=1. The only non-negative integer solutions are (X,Y)=(0,1) or (X,Y)=(1,0). We know that (a−b)+(b−c)+(c−a)=0. Let u=a−b and w=c−a. Then b−c=−(u+w). So, ∣b−c∣=∣−(u+w)∣=∣u+w∣.
Case 1: ∣a−b∣=0 and ∣c−a∣=1. Then ∣b−c∣=∣0+(c−a)∣=∣c−a∣=1. The sum is ∣c−a∣+∣a−b∣+∣b−c∣=1+0+1=2.
Case 2: ∣a−b∣=1 and ∣c−a∣=0. Then ∣b−c∣=∣(a−b)+0∣=∣a−b∣=1. The sum is ∣c−a∣+∣a−b∣+∣b−c∣=0+1+1=2. In both cases, the sum is 2.
