Solveeit Logo

Question

Question: $\frac{dy}{dx} = (x^3 - 2x \tan^{-1}y)(1+y^2)$...

dydx=(x32xtan1y)(1+y2)\frac{dy}{dx} = (x^3 - 2x \tan^{-1}y)(1+y^2)

Answer

tan1y=12(x21)+Cex2\tan^{-1}y = \frac{1}{2}(x^2-1) + C e^{-x^2}

Explanation

Solution

The given differential equation is: dydx=(x32xtan1y)(1+y2)\frac{dy}{dx} = (x^3 - 2x \tan^{-1}y)(1+y^2)

First, rearrange the equation to isolate terms involving yy and dydy: 11+y2dydx=x32xtan1y\frac{1}{1+y^2} \frac{dy}{dx} = x^3 - 2x \tan^{-1}y

This form suggests a substitution. Let v=tan1yv = \tan^{-1}y. Differentiating vv with respect to xx using the chain rule: dvdx=dvdydydx\frac{dv}{dx} = \frac{dv}{dy} \cdot \frac{dy}{dx} Since v=tan1yv = \tan^{-1}y, dvdy=11+y2\frac{dv}{dy} = \frac{1}{1+y^2}. So, dvdx=11+y2dydx\frac{dv}{dx} = \frac{1}{1+y^2} \frac{dy}{dx}.

Substitute vv and dvdx\frac{dv}{dx} into the rearranged differential equation: dvdx=x32xv\frac{dv}{dx} = x^3 - 2xv

Rearrange this into the standard form of a first-order linear differential equation, which is dvdx+P(x)v=Q(x)\frac{dv}{dx} + P(x)v = Q(x): dvdx+(2x)v=x3\frac{dv}{dx} + (2x)v = x^3 Here, P(x)=2xP(x) = 2x and Q(x)=x3Q(x) = x^3.

To solve this linear differential equation, we find the integrating factor (IF): IF=eP(x)dx=e2xdx=ex2\text{IF} = e^{\int P(x) dx} = e^{\int 2x dx} = e^{x^2}

The general solution for a linear differential equation is given by: v(IF)=Q(x)(IF)dx+Cv \cdot (\text{IF}) = \int Q(x) \cdot (\text{IF}) dx + C Substituting the values: vex2=x3ex2dx+Cv \cdot e^{x^2} = \int x^3 \cdot e^{x^2} dx + C

Now, we need to evaluate the integral x3ex2dx\int x^3 e^{x^2} dx. Let t=x2t = x^2. Then dt=2xdxdt = 2x dx, which means xdx=12dtx dx = \frac{1}{2} dt. The integral becomes: x2ex2xdx=tet12dt=12tetdt\int x^2 \cdot e^{x^2} \cdot x dx = \int t \cdot e^t \cdot \frac{1}{2} dt = \frac{1}{2} \int t e^t dt Use integration by parts for tetdt\int t e^t dt. Let u=tu=t and dv=etdtdv=e^t dt. Then du=dtdu=dt and v=etv=e^t. tetdt=tetetdt=tetet=et(t1)\int t e^t dt = t e^t - \int e^t dt = t e^t - e^t = e^t(t-1) Substitute this back: 12tetdt=12et(t1)\frac{1}{2} \int t e^t dt = \frac{1}{2} e^t(t-1) Now, substitute back t=x2t = x^2: 12ex2(x21)\frac{1}{2} e^{x^2}(x^2-1)

Substitute this result back into the general solution equation: vex2=12ex2(x21)+Cv \cdot e^{x^2} = \frac{1}{2} e^{x^2}(x^2-1) + C Divide both sides by ex2e^{x^2} (since ex20e^{x^2} \neq 0): v=12(x21)+Cex2v = \frac{1}{2}(x^2-1) + C e^{-x^2}

Finally, substitute back v=tan1yv = \tan^{-1}y: tan1y=12(x21)+Cex2\tan^{-1}y = \frac{1}{2}(x^2-1) + C e^{-x^2}

This is the general solution to the given differential equation.

Explanation of the solution:

The given differential equation is transformed into a first-order linear differential equation by substituting v=tan1yv = \tan^{-1}y. This substitution simplifies the left side of the equation from 11+y2dydx\frac{1}{1+y^2}\frac{dy}{dx} to dvdx\frac{dv}{dx}. The resulting linear equation dvdx+2xv=x3\frac{dv}{dx} + 2xv = x^3 is then solved using the integrating factor method. The integrating factor is e2xdx=ex2e^{\int 2x dx} = e^{x^2}. The solution is vex2=x3ex2dx+Cv \cdot e^{x^2} = \int x^3 e^{x^2} dx + C. The integral x3ex2dx\int x^3 e^{x^2} dx is evaluated using substitution (t=x2t=x^2) followed by integration by parts, yielding 12ex2(x21)\frac{1}{2}e^{x^2}(x^2-1). Substituting this back and solving for vv, and then replacing vv with tan1y\tan^{-1}y, gives the final solution tan1y=12(x21)+Cex2\tan^{-1}y = \frac{1}{2}(x^2-1) + C e^{-x^2}.