Solveeit Logo

Question

Question: For three simple statements p, q, and r, $p \rightarrow (q \lor r)$ is logically equivalent to...

For three simple statements p, q, and r, p(qr)p \rightarrow (q \lor r) is logically equivalent to

A

(pq)r(p \lor q) \rightarrow r

B

(pq)(pr)(p \rightarrow \sim q) \land (p \rightarrow r)

C

(pq)(pr)(p \rightarrow q) \lor (p \rightarrow r)

D

(pq)(pr)(p \rightarrow q) \land (p \rightarrow \sim r)

Answer

(C)

Explanation

Solution

To find the logical equivalent of the statement p(qr)p \rightarrow (q \lor r), we can transform the statement using standard logical equivalences. The key equivalence is ABABA \rightarrow B \equiv \sim A \lor B.

Applying this equivalence to the given statement: p(qr)p(qr)p \rightarrow (q \lor r) \equiv \sim p \lor (q \lor r) Using the associative property of disjunction (\lor), we can write this as: pqr\equiv \sim p \lor q \lor r

Now, we examine each option and transform it into a similar form using \sim and \lor to check for equivalence.

(A) (pq)r(p \lor q) \rightarrow r Using ABABA \rightarrow B \equiv \sim A \lor B: (pq)r(pq)r(p \lor q) \rightarrow r \equiv \sim (p \lor q) \lor r Using De Morgan's Law, (AB)AB\sim (A \lor B) \equiv \sim A \land \sim B: (pq)r\equiv (\sim p \land \sim q) \lor r This is not equivalent to pqr\sim p \lor q \lor r.

(B) (pq)(pr)(p \rightarrow \sim q) \land (p \rightarrow r) Using ABABA \rightarrow B \equiv \sim A \lor B for both implications: (pq)(pr)(pq)(pr)(p \rightarrow \sim q) \land (p \rightarrow r) \equiv (\sim p \lor \sim q) \land (\sim p \lor r) Using the distributive property (AB)(AC)A(BC)(A \lor B) \land (A \lor C) \equiv A \lor (B \land C): p(qr)\equiv \sim p \lor (\sim q \land r) This is not equivalent to pqr\sim p \lor q \lor r.

(C) (pq)(pr)(p \rightarrow q) \lor (p \rightarrow r) Using ABABA \rightarrow B \equiv \sim A \lor B for both implications: (pq)(pr)(pq)(pr)(p \rightarrow q) \lor (p \rightarrow r) \equiv (\sim p \lor q) \lor (\sim p \lor r) Using the associative and commutative properties of disjunction: pqpr\equiv \sim p \lor q \lor \sim p \lor r (pp)qr\equiv (\sim p \lor \sim p) \lor q \lor r Using the idempotent property AAAA \lor A \equiv A: pqr\equiv \sim p \lor q \lor r This is equivalent to the original statement.

(D) (pq)(pr)(p \rightarrow q) \land (p \rightarrow \sim r) Using ABABA \rightarrow B \equiv \sim A \lor B for both implications: (pq)(pr)(pq)(pr)(p \rightarrow q) \land (p \rightarrow \sim r) \equiv (\sim p \lor q) \land (\sim p \lor \sim r) Using the distributive property (AB)(AC)A(BC)(A \lor B) \land (A \lor C) \equiv A \lor (B \land C): p(qr)\equiv \sim p \lor (q \land \sim r) This is not equivalent to pqr\sim p \lor q \lor r.

Comparing the simplified forms, only option (C) is logically equivalent to the original statement.