Solveeit Logo

Question

Question: For a real gas (mol. mass = 30) if density at critical point is 0.40 g/cm³ and its T$\_c$ = $\frac{1...

For a real gas (mol. mass = 30) if density at critical point is 0.40 g/cm³ and its T_c\_c = 10441\frac{10^4}{41}K, then calculate Van der Waals constant a (in atm L2^2mol2^{-2}).

Answer

0.633 atm L²mol⁻²

Explanation

Solution

The relationship between the Van der Waals constant 'a' and the critical parameters is given by: a=27RTcM64ρca = \frac{27 R T_c M}{64 \rho_c} Where:

  • R is the universal gas constant (0.0821 L atm K⁻¹ mol⁻¹)
  • TcT_c is the critical temperature (10441\frac{10^4}{41} K)
  • M is the molar mass (30 g/mol)
  • ρc\rho_c is the critical density (0.40 g/cm³ = 400 g/L)

Substituting the values: a=27×(0.0821 L atm K⁻¹ mol⁻¹)×(10441 K)×(30 g/mol)64×(400 g/L)a = \frac{27 \times (0.0821 \text{ L atm K⁻¹ mol⁻¹}) \times (\frac{10^4}{41} \text{ K}) \times (30 \text{ g/mol})}{64 \times (400 \text{ g/L})} a=27×0.0821×10000×3041×64×400a = \frac{27 \times 0.0821 \times 10000 \times 30}{41 \times 64 \times 400} a0.633 atm L2mol2a \approx 0.633 \text{ atm L}^2\text{mol}^{-2}