Solveeit Logo

Question

Question: Find the condition that the chord joining two points with eccentric angles $\theta_1$ & $\theta_2$ o...

Find the condition that the chord joining two points with eccentric angles θ1\theta_1 & θ2\theta_2 on the ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 subtend a right angle at its center.

Answer

The condition is a2cosθ1cosθ2+b2sinθ1sinθ2=0a^2\cos\theta_1\cos\theta_2 + b^2\sin\theta_1\sin\theta_2 = 0. This can be simplified to tanθ1tanθ2=a2b2\tan\theta_1\tan\theta_2 = -\frac{a^2}{b^2} or cotθ1cotθ2=b2a2\cot\theta_1\cot\theta_2 = -\frac{b^2}{a^2}.

Explanation

Solution

The coordinates of the two points on the ellipse are P1(acosθ1,bsinθ1)P_1(a\cos\theta_1, b\sin\theta_1) and P2(acosθ2,bsinθ2)P_2(a\cos\theta_2, b\sin\theta_2). The center of the ellipse is the origin O(0,0)O(0,0). The position vectors are OP1=(acosθ1,bsinθ1)\vec{OP_1} = (a\cos\theta_1, b\sin\theta_1) and OP2=(acosθ2,bsinθ2)\vec{OP_2} = (a\cos\theta_2, b\sin\theta_2). For the chord to subtend a right angle at the center, OP1OP2=0\vec{OP_1} \cdot \vec{OP_2} = 0. This gives a2cosθ1cosθ2+b2sinθ1sinθ2=0a^2\cos\theta_1\cos\theta_2 + b^2\sin\theta_1\sin\theta_2 = 0. Dividing by a2cosθ1cosθ2a^2\cos\theta_1\cos\theta_2 yields 1+b2a2tanθ1tanθ2=01 + \frac{b^2}{a^2}\tan\theta_1\tan\theta_2 = 0, so tanθ1tanθ2=a2b2\tan\theta_1\tan\theta_2 = -\frac{a^2}{b^2}.