Solveeit Logo

Question

Question: Determine whether the series converges or diverges: $\sum_{n=3}^{\infty} \frac{7}{\sqrt{n+1} \ln(\s...

Determine whether the series converges or diverges:

n=37n+1ln(n+1)\sum_{n=3}^{\infty} \frac{7}{\sqrt{n+1} \ln(\sqrt{n+1})}

Answer

Diverges

Explanation

Solution

To determine whether the series n=37n+1ln(n+1)\sum_{n=3}^{\infty} \frac{7}{\sqrt{n+1} \ln(\sqrt{n+1})} converges or diverges, we can use the Limit Comparison Test.

Let an=7n+1ln(n+1)a_n = \frac{7}{\sqrt{n+1} \ln(\sqrt{n+1})}. We can rewrite ln(n+1)\ln(\sqrt{n+1}) as 12ln(n+1)\frac{1}{2} \ln(n+1), so an=14n+1ln(n+1)a_n = \frac{14}{\sqrt{n+1} \ln(n+1)}.

For large nn, n+1n\sqrt{n+1} \approx \sqrt{n} and ln(n+1)lnn\ln(n+1) \approx \ln n. Thus, an14nlnna_n \approx \frac{14}{\sqrt{n} \ln n}.

Consider the series n=21np(lnn)q\sum_{n=2}^{\infty} \frac{1}{n^p (\ln n)^q}. This series diverges if p1p \le 1 and q1q \le 1. In our case, we have an14n1/2(lnn)1a_n \approx \frac{14}{n^{1/2} (\ln n)^1}, where p=1/2<1p = 1/2 < 1 and q=1q = 1.

Let's use the Limit Comparison Test with bn=1nlnnb_n = \frac{1}{\sqrt{n} \ln n}. We know that n=21nlnn\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n} diverges because p=1/2<1p = 1/2 < 1.

Now, let's compute the limit:

L=limnanbn=limn14n+1ln(n+1)1nlnn=limn14nlnnn+1ln(n+1)=limn14nn+1lnnln(n+1)L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{14}{\sqrt{n+1} \ln(n+1)}}{\frac{1}{\sqrt{n} \ln n}} = \lim_{n \to \infty} \frac{14 \sqrt{n} \ln n}{\sqrt{n+1} \ln(n+1)} = \lim_{n \to \infty} 14 \sqrt{\frac{n}{n+1}} \cdot \frac{\ln n}{\ln(n+1)}

We know limnnn+1=limn11+1/n=1=1\lim_{n \to \infty} \sqrt{\frac{n}{n+1}} = \lim_{n \to \infty} \sqrt{\frac{1}{1+1/n}} = \sqrt{1} = 1.

We also know limnlnnln(n+1)=limnlnnln(n(1+1/n))=limnlnnlnn+ln(1+1/n)=limn11+ln(1+1/n)lnn=11+0=1\lim_{n \to \infty} \frac{\ln n}{\ln(n+1)} = \lim_{n \to \infty} \frac{\ln n}{\ln(n(1+1/n))} = \lim_{n \to \infty} \frac{\ln n}{\ln n + \ln(1+1/n)} = \lim_{n \to \infty} \frac{1}{1 + \frac{\ln(1+1/n)}{\ln n}} = \frac{1}{1+0} = 1.

So, L=1411=14L = 14 \cdot 1 \cdot 1 = 14.

Since L=14L = 14 (a finite, positive number) and bn=1nlnn\sum b_n = \sum \frac{1}{\sqrt{n} \ln n} diverges, by the Limit Comparison Test, the series an\sum a_n also diverges.

Therefore, the series diverges.