Solveeit Logo

Question

Question: \(4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}\)...

422x6x=1832x4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}

Explanation

Solution

Hint: - Use 6x=2x3x{6^x} = {2^x} \cdot {3^x}
Given equation is
422x6x=1832x4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}
Substitute, 6x=(23)x=2x3x{6^x} = {\left( {2 \cdot 3} \right)^x} = {2^x} \cdot {3^x}in the above equation
422x6x=1832x 4(2x)22x3x=18.(3x)2 4(2x)22x3x18.(3x)2=0  4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}} \\\ 4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} = 18.{\left( {{3^x}} \right)^2} \\\ 4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\\
Now factorize the above equation
4(2x)22x3x18.(3x)2=0 4(2x)2+82x3x92x3x18.(3x)2=0 42x(2x+23x)93x(2x+23x)=0 (2x+23x)(42x93x)=0 (2x+23x)=0, (42x93x)=0  4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\\ 4 \cdot {\left( {{2^x}} \right)^2} + 8 \cdot {2^x} \cdot {3^x} - 9 \cdot {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\\ 4 \cdot {2^x}\left( {{2^x} + 2 \cdot {3^x}} \right) - 9 \cdot {3^x}\left( {{2^x} + 2 \cdot {3^x}} \right) = 0 \\\ \left( {{2^x} + 2 \cdot {3^x}} \right)\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\\ \therefore \left( {{2^x} + 2 \cdot {3^x}} \right) = 0,{\text{ }}\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\\
From here, (2x+23x)=0\left( {{2^x} + 2 \cdot {3^x}} \right) = 0 cannot be possible for any finite value of xx.
Therefore (42x93x)=0\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0
42x=93x (23)x=94=(32)2=(23)2  \therefore 4 \cdot {2^x} = 9 \cdot {3^x} \\\ {\left( {\dfrac{2}{3}} \right)^x} = \dfrac{9}{4} = {\left( {\dfrac{3}{2}} \right)^2} = {\left( {\dfrac{2}{3}} \right)^{ - 2}} \\\
So on comparing the value of x=2x = - 2.
So, the required solution of the given equation is x=2x = - 2

Note: - Whenever we face such types of questions first convert the equation into simplified form then factorize the equation then put all the factors equal to zero and calculate the value of xx, which is the required solution of the given equation.