Solveeit Logo

Question

Question: A uniform rod AB of length $l$ can slide between a horizontal surface and a slope of inclination $\p...

A uniform rod AB of length ll can slide between a horizontal surface and a slope of inclination ϕ\phi as shown in the figure. If the end A is moving with uniform velocity vAv_A away from the wall, find the:

(a) velocity of the end B. (b) angular velocity of the rod. (c) velocity of the mass center.

Answer

a) Velocity of end B: vAcosθsin(θ+ϕ)\frac{v_A \cos \theta}{\sin(\theta + \phi)} (down the incline)

b) Angular velocity of the rod: vAcosϕlsin(θ+ϕ)\frac{v_A \cos \phi}{l \sin(\theta + \phi)} (clockwise)

c) Velocity of the mass center: vAcosϕ2sin(θ+ϕ)\frac{v_A \cos \phi}{2 \sin(\theta + \phi)} (along the rod)

Explanation

Solution

The problem describes a uniform rod AB of length ll sliding between a vertical wall and an inclined slope. The end A is on the vertical wall and moves upwards with a uniform velocity vAv_A. The end B is on the inclined slope, which makes an angle ϕ\phi with the horizontal. Let θ\theta be the angle the rod makes with the vertical wall.

1. Setup and Kinematic Relations:

Let the origin (0,0) be the corner where the vertical wall meets the horizontal ground. The coordinates of end A are (xA,yA)(x_A, y_A). Since A is on the vertical wall, xA=0x_A = 0. The velocity of A is vA=vAj^\vec{v}_A = v_A \hat{j} (upwards along the y-axis, as shown in the figure). So, dxAdt=0\frac{dx_A}{dt} = 0 and dyAdt=vA\frac{dy_A}{dt} = v_A.

Let the coordinates of end B be (xB,yB)(x_B, y_B). The length of the rod AB is ll. From the geometry (refer to the figure): xB=lsinθx_B = l \sin \theta yAyB=lcosθ    yB=yAlcosθy_A - y_B = l \cos \theta \implies y_B = y_A - l \cos \theta

Differentiating these position equations with respect to time to find velocities: dxBdt=vBx=lcosθdθdt\frac{dx_B}{dt} = v_{Bx} = l \cos \theta \frac{d\theta}{dt} dyBdt=vBy=dyAdtl(sinθ)dθdt=vA+lsinθdθdt\frac{dy_B}{dt} = v_{By} = \frac{dy_A}{dt} - l (-\sin \theta) \frac{d\theta}{dt} = v_A + l \sin \theta \frac{d\theta}{dt}

Let the angular velocity of the rod be ω=dθdt\omega = \frac{d\theta}{dt}. So, vBx=lωcosθv_{Bx} = l \omega \cos \theta vBy=vA+lωsinθv_{By} = v_A + l \omega \sin \theta

2. Constraint on Velocity of End B:

End B slides along the inclined plane. The inclined plane makes an angle ϕ\phi with the horizontal. The velocity of B must be directed along the incline. From the figure, as A moves up, B moves down the incline. The slope of the incline is tanϕ-\tan \phi (if we consider yy decreasing as xx increases). Therefore, the components of vB\vec{v}_B must satisfy: vBy=vBxtanϕv_{By} = -v_{Bx} \tan \phi

Substitute the expressions for vBxv_{Bx} and vByv_{By}: vA+lωsinθ=(lωcosθ)tanϕv_A + l \omega \sin \theta = -(l \omega \cos \theta) \tan \phi vA=lωsinθlωcosθtanϕv_A = -l \omega \sin \theta - l \omega \cos \theta \tan \phi vA=lω(sinθ+cosθtanϕ)v_A = -l \omega (\sin \theta + \cos \theta \tan \phi) vA=lω(sinθ+cosθsinϕcosϕ)v_A = -l \omega \left(\sin \theta + \frac{\cos \theta \sin \phi}{\cos \phi}\right) vA=lω(sinθcosϕ+cosθsinϕcosϕ)v_A = -l \omega \left(\frac{\sin \theta \cos \phi + \cos \theta \sin \phi}{\cos \phi}\right) vA=lωsin(θ+ϕ)cosϕv_A = -l \omega \frac{\sin(\theta + \phi)}{\cos \phi}

Part (b) Angular velocity of the rod:

From the above equation, the magnitude of the angular velocity ω\omega is: ω=vAcosϕlsin(θ+ϕ)=vAcosϕlsin(θ+ϕ)\omega = \left| \frac{v_A \cos \phi}{-l \sin(\theta + \phi)} \right| = \frac{v_A \cos \phi}{l \sin(\theta + \phi)} The negative sign indicates that θ\theta is decreasing as A moves up, which is consistent with the geometry. So, the direction of angular velocity is clockwise.

Part (a) Velocity of the end B:

We have vBx=lωcosθv_{Bx} = l \omega \cos \theta and vBy=vBxtanϕv_{By} = -v_{Bx} \tan \phi. Substitute the expression for ω\omega: vBx=l(vAcosϕlsin(θ+ϕ))cosθ=vAcosϕcosθsin(θ+ϕ)v_{Bx} = l \left( \frac{v_A \cos \phi}{l \sin(\theta + \phi)} \right) \cos \theta = \frac{v_A \cos \phi \cos \theta}{\sin(\theta + \phi)} vBy=(vAcosϕcosθsin(θ+ϕ))tanϕ=vAcosϕcosθsinϕsin(θ+ϕ)cosϕ=vAsinϕcosθsin(θ+ϕ)v_{By} = -\left( \frac{v_A \cos \phi \cos \theta}{\sin(\theta + \phi)} \right) \tan \phi = -\frac{v_A \cos \phi \cos \theta \sin \phi}{\sin(\theta + \phi) \cos \phi} = -\frac{v_A \sin \phi \cos \theta}{\sin(\theta + \phi)}

The velocity of end B is vB=vBxi^+vByj^\vec{v}_B = v_{Bx} \hat{i} + v_{By} \hat{j}. The magnitude of vB\vec{v}_B is: vB=vBx2+vBy2=(vAcosϕcosθsin(θ+ϕ))2+(vAsinϕcosθsin(θ+ϕ))2v_B = \sqrt{v_{Bx}^2 + v_{By}^2} = \sqrt{\left(\frac{v_A \cos \phi \cos \theta}{\sin(\theta + \phi)}\right)^2 + \left(-\frac{v_A \sin \phi \cos \theta}{\sin(\theta + \phi)}\right)^2} vB=vAcosθsin(θ+ϕ)cos2ϕ+sin2ϕ=vAcosθsin(θ+ϕ)v_B = \frac{v_A \cos \theta}{\sin(\theta + \phi)} \sqrt{\cos^2 \phi + \sin^2 \phi} = \frac{v_A \cos \theta}{\sin(\theta + \phi)} The direction of vB\vec{v}_B is down the incline, making an angle ϕ\phi below the horizontal.

Part (c) Velocity of the mass center:

For a uniform rod, the mass center C is at the midpoint of AB. Coordinates of C: (xC,yC)(x_C, y_C). xC=xA+xB2=0+lsinθ2=l2sinθx_C = \frac{x_A + x_B}{2} = \frac{0 + l \sin \theta}{2} = \frac{l}{2} \sin \theta yC=yA+yB2y_C = \frac{y_A + y_B}{2}

Velocity of mass center vC=vCxi^+vCyj^\vec{v}_C = v_{Cx} \hat{i} + v_{Cy} \hat{j}. vCx=dxCdt=l2cosθdθdt=l2ωcosθv_{Cx} = \frac{dx_C}{dt} = \frac{l}{2} \cos \theta \frac{d\theta}{dt} = \frac{l}{2} \omega \cos \theta vCy=dyCdt=12(dyAdt+dyBdt)=12(vA+vBy)v_{Cy} = \frac{dy_C}{dt} = \frac{1}{2} \left( \frac{dy_A}{dt} + \frac{dy_B}{dt} \right) = \frac{1}{2} (v_A + v_{By})

Substitute ω\omega, vBxv_{Bx}, and vByv_{By}: vCx=l2(vAcosϕlsin(θ+ϕ))cosθ=vAcosϕcosθ2sin(θ+ϕ)v_{Cx} = \frac{l}{2} \left( \frac{v_A \cos \phi}{l \sin(\theta + \phi)} \right) \cos \theta = \frac{v_A \cos \phi \cos \theta}{2 \sin(\theta + \phi)} vCy=12(vAvAsinϕcosθsin(θ+ϕ))=vA2(sin(θ+ϕ)sinϕcosθsin(θ+ϕ))v_{Cy} = \frac{1}{2} \left( v_A - \frac{v_A \sin \phi \cos \theta}{\sin(\theta + \phi)} \right) = \frac{v_A}{2} \left( \frac{\sin(\theta + \phi) - \sin \phi \cos \theta}{\sin(\theta + \phi)} \right) vCy=vA2(sinθcosϕ+cosθsinϕsinϕcosθsin(θ+ϕ))=vAsinθcosϕ2sin(θ+ϕ)v_{Cy} = \frac{v_A}{2} \left( \frac{\sin \theta \cos \phi + \cos \theta \sin \phi - \sin \phi \cos \theta}{\sin(\theta + \phi)} \right) = \frac{v_A \sin \theta \cos \phi}{2 \sin(\theta + \phi)}

The velocity of the mass center is vC=vAcosϕcosθ2sin(θ+ϕ)i^+vAsinθcosϕ2sin(θ+ϕ)j^\vec{v}_C = \frac{v_A \cos \phi \cos \theta}{2 \sin(\theta + \phi)} \hat{i} + \frac{v_A \sin \theta \cos \phi}{2 \sin(\theta + \phi)} \hat{j}. The magnitude of vC\vec{v}_C is: vC=vCx2+vCy2=(vAcosϕcosθ2sin(θ+ϕ))2+(vAsinθcosϕ2sin(θ+ϕ))2v_C = \sqrt{v_{Cx}^2 + v_{Cy}^2} = \sqrt{\left(\frac{v_A \cos \phi \cos \theta}{2 \sin(\theta + \phi)}\right)^2 + \left(\frac{v_A \sin \theta \cos \phi}{2 \sin(\theta + \phi)}\right)^2} vC=vAcosϕ2sin(θ+ϕ)cos2θ+sin2θ=vAcosϕ2sin(θ+ϕ)v_C = \frac{v_A \cos \phi}{2 \sin(\theta + \phi)} \sqrt{\cos^2 \theta + \sin^2 \theta} = \frac{v_A \cos \phi}{2 \sin(\theta + \phi)} The direction of vC\vec{v}_C is given by the angle αC\alpha_C with the horizontal: tanαC=vCyvCx=vAsinθcosϕ2sin(θ+ϕ)vAcosϕcosθ2sin(θ+ϕ)=sinθcosθ=tanθ\tan \alpha_C = \frac{v_{Cy}}{v_{Cx}} = \frac{\frac{v_A \sin \theta \cos \phi}{2 \sin(\theta + \phi)}}{\frac{v_A \cos \phi \cos \theta}{2 \sin(\theta + \phi)}} = \frac{\sin \theta}{\cos \theta} = \tan \theta. So, αC=θ\alpha_C = \theta. This means the velocity of the mass center is directed along the rod (from B towards A).

Subject: Physics Chapter: Rotational Motion Topic: Kinematics of Rigid Bodies / Relative Velocity in Rigid Bodies