Solveeit Logo

Question

Question: A tuning fork when vibrating along with a sonometer wire produces 5 beats per second when the length...

A tuning fork when vibrating along with a sonometer wire produces 5 beats per second when the length of the wire is either 25 cm or 26 cm. The frequency of tuning fork is

Answer

255 Hz

Explanation

Solution

For a sonometer wire, the fundamental frequency is given by

f=kL,f = \frac{k}{L},

with kk constant. Thus,

f25=k25,f26=k26.f_{25}=\frac{k}{25},\quad f_{26}=\frac{k}{26}.

Since the tuning fork produces 5 beats per second in each case, and the wire’s frequency decreases with increasing length, the tuning fork frequency ftf_t must lie between these two frequencies. Therefore,

f25ft=5andftf26=5.f_{25}-f_t=5 \quad \text{and} \quad f_t-f_{26}=5.

Adding:

f25f26=10.f_{25}-f_{26}=10.

Substitute:

k25k26=k(262525×26)=k650=10.\frac{k}{25}-\frac{k}{26} = k\left(\frac{26-25}{25\times26}\right) = \frac{k}{650} = 10.

Thus,

k=10×650=6500.k=10\times 650=6500.

Now, using f25ft=5f_{25}-f_t=5:

ft=f255=6500255=2605=255Hz.f_t = f_{25}-5 = \frac{6500}{25}-5=260-5=255\,\text{Hz}.