Solveeit Logo

Question

Question: A rod of fixed length k has its ends sliding along the coordinate axes in $I^{st}$ quadrant such tha...

A rod of fixed length k has its ends sliding along the coordinate axes in IstI^{st} quadrant such that rod meets the x-axis at A(a, 0) and y-axis at B(0, b). If O is origin and E=(a+1b)2+(b+1a)2E = \left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{a}\right)^2.

Which of the following holds good?

A

Minimum value of E is k2+4k2+2k^2 + \frac{4}{k^2} + 2

B

Minimum value of E is (k+2k)2\left(k + \frac{2}{k}\right)^2

C

When E is minimum then area of AOB\triangle AOB is k24\frac{k^2}{4}

D

When E is minimum then area of AOB\triangle AOB is k22\frac{k^2}{2}

Answer

B, C

Explanation

Solution

The problem describes a rod of fixed length kk with its ends sliding along the coordinate axes in the first quadrant. Let the ends be A(a,0)A(a, 0) on the x-axis and B(0,b)B(0, b) on the y-axis. Since the rod is in the first quadrant, a>0a > 0 and b>0b > 0. The origin is O(0,0)O(0,0).

  1. Relation between a, b, and k: The length of the rod ABAB is kk. Using the distance formula or Pythagorean theorem for AOB\triangle AOB: OA2+OB2=AB2OA^2 + OB^2 = AB^2 a2+b2=k2a^2 + b^2 = k^2

  2. Simplify the expression E: The expression given is E=(a+1b)2+(b+1a)2E = \left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{a}\right)^2. Expand the squares: E=(a2+1b2+2ab)+(b2+1a2+2ba)E = \left(a^2 + \frac{1}{b^2} + \frac{2a}{b}\right) + \left(b^2 + \frac{1}{a^2} + \frac{2b}{a}\right) Group terms: E=(a2+b2)+(1a2+1b2)+2(ab+ba)E = (a^2 + b^2) + \left(\frac{1}{a^2} + \frac{1}{b^2}\right) + 2\left(\frac{a}{b} + \frac{b}{a}\right) Substitute a2+b2=k2a^2 + b^2 = k^2: E=k2+k2a2b2+2k2abE = k^2 + \frac{k^2}{a^2 b^2} + \frac{2k^2}{ab} Factor out k2k^2: E=k2(1+1a2b2+2ab)E = k^2 \left(1 + \frac{1}{a^2 b^2} + \frac{2}{ab}\right) The term in the parenthesis is a perfect square: E=k2(1+1ab)2E = k^2 \left(1 + \frac{1}{ab}\right)^2

  3. Minimize E: To minimize E=k2(1+1ab)2E = k^2 \left(1 + \frac{1}{ab}\right)^2, we need to minimize the term (1+1ab)2\left(1 + \frac{1}{ab}\right)^2. Since a,b>0a, b > 0, 1+1ab1 + \frac{1}{ab} is positive. Therefore, minimizing the square is equivalent to minimizing 1+1ab1 + \frac{1}{ab}. This occurs when the term 1ab\frac{1}{ab} is minimized, which means the product abab must be maximized.

  4. Maximize ab: We need to maximize abab subject to the constraint a2+b2=k2a^2 + b^2 = k^2 for a,b>0a, b > 0. Using the AM-GM inequality: For positive numbers a2a^2 and b2b^2, a2+b22a2b2\frac{a^2 + b^2}{2} \ge \sqrt{a^2 b^2} k22ab\frac{k^2}{2} \ge ab The maximum value of abab is k22\frac{k^2}{2}. This maximum occurs when a2=b2a^2 = b^2, which implies a=ba=b (since a,b>0a,b>0). If a=ba=b, then a2+a2=k22a2=k2a2=k22a^2 + a^2 = k^2 \Rightarrow 2a^2 = k^2 \Rightarrow a^2 = \frac{k^2}{2}. So, a=b=k2a = b = \frac{k}{\sqrt{2}}.

  5. Calculate the minimum value of E: Substitute the maximum value of ab=k22ab = \frac{k^2}{2} into the simplified expression for E: Emin=k2(1+1k22)2E_{min} = k^2 \left(1 + \frac{1}{\frac{k^2}{2}}\right)^2 Emin=k2(1+2k2)2E_{min} = k^2 \left(1 + \frac{2}{k^2}\right)^2 Emin=k2(k2+2)2k4E_{min} = k^2 \frac{(k^2 + 2)^2}{k^4} Emin=(k2+2)2k2E_{min} = \frac{(k^2 + 2)^2}{k^2} Emin=k4+4k2+4k2E_{min} = \frac{k^4 + 4k^2 + 4}{k^2} Emin=k2+4+4k2E_{min} = k^2 + 4 + \frac{4}{k^2}

    Now let's check the given options for the minimum value of E: (A) Minimum value of E is k2+4k2+2k^2 + \frac{4}{k^2} + 2. This is incorrect. (B) Minimum value of E is (k+2k)2\left(k + \frac{2}{k}\right)^2. Expand (k+2k)2=k2+2(k)(2k)+(2k)2=k2+4+4k2\left(k + \frac{2}{k}\right)^2 = k^2 + 2(k)\left(\frac{2}{k}\right) + \left(\frac{2}{k}\right)^2 = k^2 + 4 + \frac{4}{k^2}. This matches our calculated EminE_{min}. So, option (B) is correct.

  6. Calculate the area of AOB\triangle AOB when E is minimum: The area of AOB\triangle AOB is given by 12×base×height=12×OA×OB=12ab\frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times OA \times OB = \frac{1}{2} ab. When E is minimum, abab is at its maximum value, which is k22\frac{k^2}{2}. Area of AOB=12(k22)=k24\triangle AOB = \frac{1}{2} \left(\frac{k^2}{2}\right) = \frac{k^2}{4}.

    Now let's check the given options for the area of AOB\triangle AOB: (C) When E is minimum then area of AOB\triangle AOB is k24\frac{k^2}{4}. This is correct. (D) When E is minimum then area of AOB\triangle AOB is k22\frac{k^2}{2}. This is incorrect.

Both options (B) and (C) hold good.