Solveeit Logo

Question

Question: 50 gm of $CaCO_3$ is allowed to react with 68.6 gm of $H_3PO_4$ then select the correct option(s)- $...

50 gm of CaCO3CaCO_3 is allowed to react with 68.6 gm of H3PO4H_3PO_4 then select the correct option(s)- 3CaCO3+2H3PO4Ca3(PO4)2+3H2O+3CO23CaCO_3 + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 3H_2O + 3CO_2

A

51.67 gm salt is formed

B

Amount of unreacted reagent = 35.93 gm

C

nCO2n_{CO2} = 0.5 moles

D

0.7 mole CO2CO_2 is evolved

Answer

A, B, C

Explanation

Solution

The problem involves a stoichiometry calculation for the reaction between calcium carbonate (CaCO3CaCO_3) and phosphoric acid (H3PO4H_3PO_4).

1. Balanced Chemical Equation: The given balanced chemical equation is: 3CaCO3+2H3PO4Ca3(PO4)2+3H2O+3CO23CaCO_3 + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 3H_2O + 3CO_2

2. Molar Masses of Reactants and Products:

  • Molar mass of CaCO3=40+12+(3×16)=100CaCO_3 = 40 + 12 + (3 \times 16) = 100 g/mol
  • Molar mass of H3PO4=(3×1)+31+(4×16)=3+31+64=98H_3PO_4 = (3 \times 1) + 31 + (4 \times 16) = 3 + 31 + 64 = 98 g/mol
  • Molar mass of Ca3(PO4)2=(3×40)+2×(31+(4×16))=120+2×(31+64)=120+2×95=120+190=310Ca_3(PO_4)_2 = (3 \times 40) + 2 \times (31 + (4 \times 16)) = 120 + 2 \times (31 + 64) = 120 + 2 \times 95 = 120 + 190 = 310 g/mol
  • Molar mass of CO2=12+(2×16)=12+32=44CO_2 = 12 + (2 \times 16) = 12 + 32 = 44 g/mol

3. Calculate Initial Moles of Reactants:

  • Moles of CaCO3=Given massMolar mass=50 gm100 gm/mol=0.5 molCaCO_3 = \frac{\text{Given mass}}{\text{Molar mass}} = \frac{50 \text{ gm}}{100 \text{ gm/mol}} = 0.5 \text{ mol}
  • Moles of H3PO4=Given massMolar mass=68.6 gm98 gm/mol=0.7 molH_3PO_4 = \frac{\text{Given mass}}{\text{Molar mass}} = \frac{68.6 \text{ gm}}{98 \text{ gm/mol}} = 0.7 \text{ mol}

4. Identify the Limiting Reagent: To find the limiting reagent, divide the moles of each reactant by its stoichiometric coefficient in the balanced equation:

  • For CaCO3CaCO_3: 0.5 mol3=0.1667\frac{0.5 \text{ mol}}{3} = 0.1667
  • For H3PO4H_3PO_4: 0.7 mol2=0.35\frac{0.7 \text{ mol}}{2} = 0.35

Since 0.1667<0.350.1667 < 0.35, CaCO3CaCO_3 is the limiting reagent. It will be completely consumed, and all calculations for products and unreacted reagent will be based on the amount of CaCO3CaCO_3.

5. Evaluate Each Option:

(A) 51.67 gm salt (Ca3(PO4)2Ca_3(PO_4)_2) is formed: From the balanced equation, 3 moles of CaCO3CaCO_3 produce 1 mole of Ca3(PO4)2Ca_3(PO_4)_2. Moles of Ca3(PO4)2Ca_3(PO_4)_2 formed = 0.5 mol CaCO3×1 mol Ca3(PO4)23 mol CaCO3=0.53=0.1666... mol0.5 \text{ mol } CaCO_3 \times \frac{1 \text{ mol } Ca_3(PO_4)_2}{3 \text{ mol } CaCO_3} = \frac{0.5}{3} = 0.1666... \text{ mol} Mass of Ca3(PO4)2Ca_3(PO_4)_2 formed = 0.1666... mol×310 gm/mol=51.666... gm51.67 gm0.1666... \text{ mol} \times 310 \text{ gm/mol} = 51.666... \text{ gm} \approx 51.67 \text{ gm} So, option (A) is correct.

(B) Amount of unreacted reagent = 35.93 gm: The unreacted reagent is H3PO4H_3PO_4. From the balanced equation, 3 moles of CaCO3CaCO_3 react with 2 moles of H3PO4H_3PO_4. Moles of H3PO4H_3PO_4 reacted = 0.5 mol CaCO3×2 mol H3PO43 mol CaCO3=13=0.3333... mol0.5 \text{ mol } CaCO_3 \times \frac{2 \text{ mol } H_3PO_4}{3 \text{ mol } CaCO_3} = \frac{1}{3} = 0.3333... \text{ mol} Moles of H3PO4H_3PO_4 unreacted = Initial moles - Moles reacted =0.7 mol0.3333... mol=0.3666... mol= 0.7 \text{ mol} - 0.3333... \text{ mol} = 0.3666... \text{ mol} Mass of unreacted H3PO4H_3PO_4 = 0.3666... mol×98 gm/mol=35.9333... gm35.93 gm0.3666... \text{ mol} \times 98 \text{ gm/mol} = 35.9333... \text{ gm} \approx 35.93 \text{ gm} So, option (B) is correct.

(C) nCO2n_{CO2} = 0.5 moles: From the balanced equation, 3 moles of CaCO3CaCO_3 produce 3 moles of CO2CO_2. Moles of CO2CO_2 produced = 0.5 mol CaCO3×3 mol CO23 mol CaCO3=0.5 mol0.5 \text{ mol } CaCO_3 \times \frac{3 \text{ mol } CO_2}{3 \text{ mol } CaCO_3} = 0.5 \text{ mol} So, option (C) is correct.

(D) 0.7 mole CO2CO_2 is evolved: As calculated above, 0.5 moles of CO2CO_2 are evolved, not 0.7 moles. So, option (D) is incorrect.

Conclusion: Options (A), (B), and (C) are correct.

Explanation of the solution:

  1. Calculate initial moles of reactants using their given masses and molar masses.
  2. Identify the limiting reagent by comparing the mole ratios of reactants to their stoichiometric coefficients. CaCO3CaCO_3 is the limiting reagent.
  3. Use the moles of the limiting reagent to calculate the moles and mass of the product Ca3(PO4)2Ca_3(PO_4)_2 formed.
  4. Use the moles of the limiting reagent to calculate the moles of CO2CO_2 evolved.
  5. Use the moles of the limiting reagent to calculate the moles of H3PO4H_3PO_4 reacted, then subtract from initial moles to find unreacted amount.