Solveeit Logo

Question

Physics Question on Waves

4.0 g of a gas occupies 22.4 litres at NTP. The specific heat capacity of the gas at constant volume is 5.0 JK1mol1JK^{-1} \, mol^{-1}. If the speed of sound in this gas at NTP is 952 ms1ms^{-1}, then the heat capacity at constant pressure is (Take gas constant R = 8.3 JK1mol1JK^{-1} \, mol^{-1} )

A

7.0JK1mol17.0 \, JK^{-1} \, mol^{-1}

B

8.5JK1mol18.5 \, JK^{-1} \, mol^{-1}

C

8.0JK1mol18.0 \, JK^{-1} \, mol^{-1}

D

7.5JK1mol17.5 \, JK^{-1} \, mol^{-1}

Answer

8.0JK1mol18.0 \, JK^{-1} \, mol^{-1}

Explanation

Solution

Since 4.0 g of a gas occupies 22.4 litres at NTP, so the molecular mass of the gas is
M=4.0gmol1M = 4.0 \, g\, mol^{-1}
As the speed of the sound in the gas is
v=?RTMv=\sqrt{\frac{?RT}{M}}
where ?? is the ratio of two specific heats, R is the universal gas constant and T is the temperature of the gas.
γ=Mv2RT\therefore \, \gamma = \frac{Mv^2}{RT}
Here, M=4.0gmol1=4.0×103kgmol1 \, \, \, M = 4.0 \, g \, mol^{-1} = 4.0 \times 10^{-3}kg\, mol^{-1}
v=952ms1,R=8.3JK1mol1v=952 \, ms^{-1}, R = 8.3\, JK^{-1}\, mol^{-1},
v=952mol1,R=8.3JK1mol1v= 952\, mol^{-1}, R = 8.3\,JK^{-1}\, mol^{-1}
and T = 273 K (at NTP)
γ=(4.0×103kgmol1)(952ms1)2(8.3JK1mol1)(273K)=1.6\therefore \gamma= \frac{(4.0 \times 10^{-3} \,kg\, mol^{-1})(952\,ms^{-1})^2}{(8.3 JK^{-1} mol^{-1})(273\,K)}=1.6
By definition,
γ=CPVV\gamma=\frac{C_P}{V_V} or CP=γCVC_P = \gamma C_V
But γ=1.6\gamma=1.6 and CV=5.0JK1mol1C_V=5.0 \,JK^{-1} \, mol^{-1}
CP=(1.6)(5.0JK1mol1)\therefore \, \, C_P = (1.6)(5.0 JK^{1} \, mol^{-1})
=8.0JK1mol1\, \, \, \, =8.0 \,JK^{-1} mol^{-1}