Solveeit Logo

Question

Question: 3$\sqrt{log27}$ -2$\sqrt{log32243}$ -5$\sqrt{log62581}$ +3$\sqrt{log925}$ +$\sqrt{2log829}$ +3$\sqrt...

3log27\sqrt{log27} -2log32243\sqrt{log32243} -5log62581\sqrt{log62581} +3log925\sqrt{log925} +2log829\sqrt{2log829} +3log8425\sqrt{log8425} -5log49, is less than

Answer

The given expression is less than 0.

Explanation

Solution

We wish to show that

S=3log272log322435log62581+3log925+2log829+3log84255log49S=3\sqrt{\log 27}-2\sqrt{\log 32243}-5\sqrt{\log 62581}+3\sqrt{\log 925}+\sqrt{2\log 829}+3\sqrt{\log 8425}-5\log 49

is less than 0.

For a JEE‐/NEET–level approach we “estimate” each term (taking “log” to mean logarithm to base 10):

  1. Term 1:
    Since 27=3327=3^3 we have
    log27=3log3\log 27=3\log3.)
    Thus,

    3log27=33log3.3\sqrt{\log27}=3\sqrt{3\log3}\,.

    Using log10(3)0.4771,\log10(3)\approx0.4771,
    3×0.47711.43131.196,\sqrt{3\times0.4771}\approx \sqrt{1.4313}\approx1.196, so the term is about

    3×1.1963.588.3\times1.196\approx 3.588.
  2. Term 2:
    For 32243,32243, we have
    log322434.5087\log 32243\approx 4.5087 (since 322433.2243×10432243\approx 3.2243\times10^4).
    Thus,
    4.50872.124,\sqrt{4.5087}\approx 2.124, and
    2log322432×2.1244.248.-2\sqrt{\log32243}\approx -2\times2.124\approx -4.248.

  3. Term 3:
    Similarly,
    log625814.796,\log 62581\approx 4.796, so
    4.7962.191,\sqrt{4.796}\approx 2.191, giving
    5log625815×2.19110.955.-5\sqrt{ \log62581}\approx -5\times2.191\approx -10.955.

  4. Term 4:
    log9252.9666\log925\approx 2.9666 (since 9259.25×102925\approx9.25\times10^2) so
    2.96661.722,\sqrt{2.9666}\approx1.722, and
    3log9253×1.7225.166.3\sqrt{\log925}\approx 3\times1.722\approx5.166.

  5. Term 5:
    Here, first compute log8292.918,\log829\approx 2.918, then
    2log8295.836,2\log829\approx 5.836, so
    5.8362.415.\sqrt{5.836}\approx2.415.

  6. Term 6:
    For 84258425, we get log84253.925\log8425\approx 3.925 (since 84258.425×1038425\approx8.425\times10^3);
    thus, 3.9251.981,\sqrt{3.925}\approx1.981, and
    3log84253×1.9815.943.3\sqrt{\log8425}\approx 3\times1.981\approx5.943.

  7. Term 7:
    Since 49=72,49=7^2, we have
    log49=2log7\log49=2\log7.
    Using log70.8451,\log7\approx0.8451, we get
    log491.6902,\log49\approx1.6902, so
    5log495×1.69028.451.-5\log49\approx -5\times1.6902\approx -8.451.

Now, let’s add them:

  • Term 1:      +3.588
  • Term 2:      –4.248
    3.588 – 4.248 = –0.660
  • Term 3:      –10.955 → Total ≈ –11.615
  • Term 4:      +5.166  → Total ≈ –6.449
  • Term 5:      +2.415  → Total ≈ –4.034
  • Term 6:      +5.943  → Total ≈ +1.909
  • Term 7:      –8.451  → Final total ≈ –6.542

Thus, we obtain

S6.54,S\approx-6.54,

which is clearly less than 0.

Here’s a concise mermaid diagram of the solution flow:

Minimal Explanation:
Convert numbers to logarithmic expressions (e.g. log27 = 3log3), estimate each term using approximations for log3,log7,\log 3,\log 7, etc., compute all square roots and coefficients, sum the terms getting approximately –6.54, and conclude the expression is less than 0.