Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

3cos1x=cos1(4x33x)x[12,1]3cos^{-1x}=cos^{-1}(4x^3-3x)\,x\in\bigg[-\frac{1}{2},1\bigg] prove.

Answer

3cos1x=cos1(4x33x)x[12,1]3cos^{-1x}=cos^{-1}(4x^3-3x)\,x\in[-\frac{1}{2},1]
To prove:
Let x = cosθ. Then, cos1x=θcos^{-1}x=\theta.
We have,
RHS= cos1(4x33x)cos^{-1}(4x^3-3x)
= cos1(4cos2θ3cosθ)cos^{-1}(4cos2\theta-3cos\theta)
= cos1(cos3θ)cos^{-1}(cos3\theta)
= 3θ
= 3cos1x3cos^{-1x}
=L.H.S.=L.H.S.