Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

3a01(ax1a1)2dx3a{{\int_{0}^{1}{\left( \frac{ax-1}{a-1} \right)}}^{2}}\,\,dx is equal to

A

a1+(a1)2a-1+{{(a-1)}^{-2}}

B

a+a2a+{{a}^{-2}}

C

aa2a-{{a}^{-2}}

D

a2+1a2{{a}^{2}}+\frac{1}{{{a}^{2}}}

Answer

a1+(a1)2a-1+{{(a-1)}^{-2}}

Explanation

Solution

3a01(ax1a1)2dx=3a(a1)2[(ax1)33×1a]013a\int_{0}^{1}{{{\left( \frac{ax-1}{a-1} \right)}^{2}}\,dx=\frac{3a}{{{(a-1)}^{2}}}}\left[ \frac{{{(ax-1)}^{3}}}{3}\times \frac{1}{a} \right]_{0}^{1}
=1(a1)2[(a1)3+1]=\frac{1}{{{(a-1)}^{2}}}[{{(a-1)}^{3}}+1]
=(a1)+(a1)2=(a-1)+{{(a-1)}^{-2}}