Solveeit Logo

Question

Question: Solve 3cosx + 4sinx = 5...

Solve 3cosx + 4sinx = 5

A

x = nπ + 2α where α = tan⁻¹(12\frac{1}{2}), n ∈ I

B

x = 2nπ + α where α = tan⁻¹(12\frac{1}{2}), n ∈ I

C

x = nπ + 2α where α = tan⁻¹(12\frac{1}{2}), n ∈ I

D

x = 2nπ + 2α where α = tan⁻¹(12\frac{1}{2}), n ∈ I

Answer

x = 2nπ + 2α where α = tan⁻¹(12\frac{1}{2}), n ∈ I

Explanation

Solution

The given equation is 3cosx+4sinx=53\cos x + 4\sin x = 5. We can solve this using the substitution t=tan(x/2)t = \tan(x/2), where cosx=1t21+t2\cos x = \frac{1-t^2}{1+t^2} and sinx=2t1+t2\sin x = \frac{2t}{1+t^2}. Substituting these into the equation gives 3(1t21+t2)+4(2t1+t2)=53\left(\frac{1-t^2}{1+t^2}\right) + 4\left(\frac{2t}{1+t^2}\right) = 5. Multiplying by (1+t2)(1+t^2) yields 3(1t2)+8t=5(1+t2)3(1-t^2) + 8t = 5(1+t^2), which simplifies to 33t2+8t=5+5t23 - 3t^2 + 8t = 5 + 5t^2. Rearranging into a quadratic equation gives 8t28t+2=08t^2 - 8t + 2 = 0, or 4t24t+1=04t^2 - 4t + 1 = 0. This factors as (2t1)2=0(2t - 1)^2 = 0, so t=12t = \frac{1}{2}. Substituting back t=tan(x/2)t = \tan(x/2), we have tan(x/2)=12\tan(x/2) = \frac{1}{2}. Let α=tan1(12)\alpha = \tan^{-1}(\frac{1}{2}). Then tan(x/2)=tan(α)\tan(x/2) = \tan(\alpha). The general solution for tanθ=tanβ\tan \theta = \tan \beta is θ=nπ+β\theta = n\pi + \beta. Therefore, x2=nπ+α\frac{x}{2} = n\pi + \alpha, which gives x=2nπ+2αx = 2n\pi + 2\alpha. Substituting the value of α\alpha, we get x=2nπ+2tan1(12)x = 2n\pi + 2\tan^{-1}(\frac{1}{2}).