Solveeit Logo

Question

Question: Let \(a_1 = 1\); and \(a_n = n\bigl(a_{n-1} + 1\bigr)\) for \(n = 2,3,\dots\). Define \[ P_n = \pro...

Let a1=1a_1 = 1; and an=n(an1+1)a_n = n\bigl(a_{n-1} + 1\bigr) for n=2,3,n = 2,3,\dots. Define

Pn=k=1n(1+1ak).P_n = \prod_{k=1}^n \Bigl(1 + \frac{1}{a_k}\Bigr).

Then limnPn\displaystyle\lim_{n\to\infty} P_n is

A

1+e

B

e

C

1

D

\infty

Answer

e

Explanation

Solution

Step 1. Compute a few terms of the sequence:

a1=1,a2=2(a1+1)=4,a3=3(a2+1)=15,a4=4(15+1)=64,a_1 = 1,\quad a_2 = 2(a_1+1)=4,\quad a_3 = 3(a_2+1)=15,\quad a_4 = 4\,(15+1)=64,\dots

Step 2. Show the closed form

an+1=n!k=0n1k!.a_n+1 = n! \sum_{k=0}^{n}\frac{1}{k!}.

(This can be proved by induction.)

Step 3. Then

1+1ak=ak+1ak=k!i=0k1i!k!i=0k1i!1.1 + \frac{1}{a_k} = \frac{a_k + 1}{a_k} = \frac{k!\sum_{i=0}^k \frac{1}{i!}}{\,k!\sum_{i=0}^k \frac{1}{i!} - 1\,}.

So the partial product

Pn=k=1n(1+1ak)P_n = \prod_{k=1}^n\Bigl(1+\frac1{a_k}\Bigr)

can be evaluated numerically:

P1=2,  P2=2.5,  P32.6667,  P42.7083,  P_1 = 2,\; P_2 = 2.5,\; P_3 \approx 2.6667,\; P_4 \approx 2.7083,\;\dots

It approaches the value e2.71828e\approx2.71828.

Conclusion. limnPn=e.\displaystyle\lim_{n\to\infty}P_n = e.