Question
Question: Let \(a_1 = 1\); and \(a_n = n\bigl(a_{n-1} + 1\bigr)\) for \(n = 2,3,\dots\). Define \[ P_n = \pro...
Let a1=1; and an=n(an−1+1) for n=2,3,…. Define
Pn=k=1∏n(1+ak1).Then n→∞limPn is

A
1+e
B
e
C
1
D
∞
Answer
e
Explanation
Solution
Step 1. Compute a few terms of the sequence:
a1=1,a2=2(a1+1)=4,a3=3(a2+1)=15,a4=4(15+1)=64,…Step 2. Show the closed form
an+1=n!k=0∑nk!1.(This can be proved by induction.)
Step 3. Then
1+ak1=akak+1=k!∑i=0ki!1−1k!∑i=0ki!1.So the partial product
Pn=k=1∏n(1+ak1)can be evaluated numerically:
P1=2,P2=2.5,P3≈2.6667,P4≈2.7083,…It approaches the value e≈2.71828.
Conclusion. n→∞limPn=e.