Solveeit Logo

Question

Question: Let a computer program generate only the digits 0 and 1 to form a string of binary numbers with prob...

Let a computer program generate only the digits 0 and 1 to form a string of binary numbers with probability of occurrence of 0 at even places be 12\frac{1}{2} and probability of occurrence of 0 at the odd place be 13\frac{1}{3}. Then the probability that '10' is followed by '01' is equal to:

A

118\frac{1}{18}

B

13\frac{1}{3}

C

16\frac{1}{6}

D

19\frac{1}{9}

Answer

118\frac{1}{18}

Explanation

Solution

The problem asks for the probability of the sequence '1001'. Given probabilities: P(0 at odd place)=13    P(1 at odd place)=113=23P(0 \text{ at odd place}) = \frac{1}{3} \implies P(1 \text{ at odd place}) = 1 - \frac{1}{3} = \frac{2}{3} P(0 at even place)=12    P(1 at even place)=112=12P(0 \text{ at even place}) = \frac{1}{2} \implies P(1 \text{ at even place}) = 1 - \frac{1}{2} = \frac{1}{2}

For the sequence '1001' starting at position 1:

  • Position 1 (odd): Digit is '1'. Probability = P(1 at odd)=23P(1 \text{ at odd}) = \frac{2}{3}.
  • Position 2 (even): Digit is '0'. Probability = P(0 at even)=12P(0 \text{ at even}) = \frac{1}{2}.
  • Position 3 (odd): Digit is '0'. Probability = P(0 at odd)=13P(0 \text{ at odd}) = \frac{1}{3}.
  • Position 4 (even): Digit is '1'. Probability = P(1 at even)=12P(1 \text{ at even}) = \frac{1}{2}.

Assuming independence, the probability of the sequence '1001' is: P(’1001’)=P(1 at odd)×P(0 at even)×P(0 at odd)×P(1 at even)P(\text{'1001'}) = P(1 \text{ at odd}) \times P(0 \text{ at even}) \times P(0 \text{ at odd}) \times P(1 \text{ at even}) P(’1001’)=23×12×13×12=236=118P(\text{'1001'}) = \frac{2}{3} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \frac{2}{36} = \frac{1}{18}.