Solveeit Logo

Question

Question: If $\int_{0}^{1} \frac{dx}{\sqrt{1+x}-\sqrt{x}} = \frac{k}{3}$, then $k=$...

If 01dx1+xx=k3\int_{0}^{1} \frac{dx}{\sqrt{1+x}-\sqrt{x}} = \frac{k}{3}, then k=k=

Answer

4\sqrt{2}

Explanation

Solution

To solve the integral 01dx1+xx\int_{0}^{1} \frac{dx}{\sqrt{1+x}-\sqrt{x}}, we first rationalize the denominator by multiplying the numerator and denominator by 1+x+x\sqrt{1+x} + \sqrt{x}:

01dx1+xx=011+x+x(1+xx)(1+x+x)dx\int_{0}^{1} \frac{dx}{\sqrt{1+x}-\sqrt{x}} = \int_{0}^{1} \frac{\sqrt{1+x}+\sqrt{x}}{(\sqrt{1+x}-\sqrt{x})(\sqrt{1+x}+\sqrt{x})} dx

=011+x+x(1+x)xdx=01(1+x+x)dx= \int_{0}^{1} \frac{\sqrt{1+x}+\sqrt{x}}{(1+x)-x} dx = \int_{0}^{1} (\sqrt{1+x}+\sqrt{x}) dx

Now, we split the integral into two parts:

011+xdx+01xdx\int_{0}^{1} \sqrt{1+x} dx + \int_{0}^{1} \sqrt{x} dx

For the first integral, let u=1+xu = 1+x, so du=dxdu = dx. When x=0x=0, u=1u=1, and when x=1x=1, u=2u=2. Thus,

12udu=[23u3/2]12=23(23/213/2)=23(221)\int_{1}^{2} \sqrt{u} du = \left[ \frac{2}{3}u^{3/2} \right]_{1}^{2} = \frac{2}{3}(2^{3/2} - 1^{3/2}) = \frac{2}{3}(2\sqrt{2} - 1)

For the second integral:

01xdx=[23x3/2]01=23(13/203/2)=23\int_{0}^{1} \sqrt{x} dx = \left[ \frac{2}{3}x^{3/2} \right]_{0}^{1} = \frac{2}{3}(1^{3/2} - 0^{3/2}) = \frac{2}{3}

Adding the two results:

23(221)+23=42323+23=423\frac{2}{3}(2\sqrt{2} - 1) + \frac{2}{3} = \frac{4\sqrt{2}}{3} - \frac{2}{3} + \frac{2}{3} = \frac{4\sqrt{2}}{3}

Since 01dx1+xx=k3\int_{0}^{1} \frac{dx}{\sqrt{1+x}-\sqrt{x}} = \frac{k}{3}, we have k3=423\frac{k}{3} = \frac{4\sqrt{2}}{3}, which implies k=42k = 4\sqrt{2}.