Question
Question: If $\int_{0}^{1} \frac{dx}{\sqrt{1+x}-\sqrt{x}} = \frac{k}{3}$, then $k=$...
If ∫011+x−xdx=3k, then k=

Answer
4\sqrt{2}
Explanation
Solution
To solve the integral ∫011+x−xdx, we first rationalize the denominator by multiplying the numerator and denominator by 1+x+x:
∫011+x−xdx=∫01(1+x−x)(1+x+x)1+x+xdx
=∫01(1+x)−x1+x+xdx=∫01(1+x+x)dx
Now, we split the integral into two parts:
∫011+xdx+∫01xdx
For the first integral, let u=1+x, so du=dx. When x=0, u=1, and when x=1, u=2. Thus,
∫12udu=[32u3/2]12=32(23/2−13/2)=32(22−1)
For the second integral:
∫01xdx=[32x3/2]01=32(13/2−03/2)=32
Adding the two results:
32(22−1)+32=342−32+32=342
Since ∫011+x−xdx=3k, we have 3k=342, which implies k=42.