Solveeit Logo

Question

Question: Let $P(2, 1,5)$ be a point in space and $Q$ be a point on the line $\vec{r} = (\hat{i} - \hat{j} + 2...

Let P(2,1,5)P(2, 1,5) be a point in space and QQ be a point on the line r=(i^j^+2k^)+μ(3i^+j^+5k^)\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k}). Then the value of μ\mu for which the vector PQ\overline{PQ} is parallel to the plane 3xy+4z=13x - y + 4z = 1 is

A

\frac{-16}{13}

B

\frac{16}{13}

C

\frac{-13}{16}

D

\frac{13}{16}

Answer

The correct value of μ\mu is 1310\frac{13}{10} (none of the given options).

Explanation

Solution

Solution:

  1. Coordinates of Q:
    The line is given by

    r=(1,1,2)+μ(3,1,5).\vec{r} = (1, -1, 2) + \mu(-3, 1, 5).

    Hence,

    Q=(13μ,1+μ,2+5μ).Q=(1-3\mu, -1+\mu, 2+5\mu).
  2. Vector PQ:
    Point P=(2,1,5)P=(2, 1, 5), so

    PQ=QP=((13μ)2,(1+μ)1,(2+5μ)5)=(13μ,2+μ,3+5μ).\overrightarrow{PQ}= Q-P = \bigl((1-3\mu)-2, (-1+\mu)-1, (2+5\mu)-5\bigr) = (-1-3\mu, -2+\mu, -3+5\mu).
  3. Condition for Parallelism:
    A vector is parallel to a plane if it is perpendicular to the plane’s normal.
    The plane is

    3xy+4z=1,3x-y+4z=1,

    so its normal is

    n=(3,1,4).\mathbf{n}=(3,-1,4).

    Therefore,

    PQn=0.\overrightarrow{PQ}\cdot \mathbf{n}=0.
  4. Dot Product Calculation:

    (13μ)(3)+(2+μ)(1)+(3+5μ)(4)=0.(-1-3\mu)(3)+(-2+\mu)(-1)+(-3+5\mu)(4)=0.

    Expanding:

    39μ+2μ12+20μ=0.-3-9\mu +2-\mu -12+20\mu= 0.

    Combine like terms:

    (3+212)+(9μμ+20μ)=13+10μ=0.(-3+2-12) + (-9\mu-\mu+20\mu)= -13 + 10\mu= 0.

    Thus,

    10μ=13μ=1310.10\mu=13\quad\Longrightarrow\quad \mu=\frac{13}{10}.
  5. Observing the Options:
    The computed answer 1310\frac{13}{10} does not match any of the provided options (A: 1613-\frac{16}{13}, B: 1613\frac{16}{13}, C: 1316-\frac{13}{16}, D: 1316\frac{13}{16}). Hence, the correct value is 1310\frac{13}{10}.


Minimal Explanation:
Express QQ in terms of μ\mu; compute PQ=QP\overrightarrow{PQ}=Q-P; require PQ\overrightarrow{PQ} to be perpendicular to the normal (3,1,4)(3, -1, 4); solve (13μ)3+(2+μ)(1)+(3+5μ)4=0(-1-3\mu)3+(-2+\mu)(-1)+(-3+5\mu)4=0 to get μ=1310\mu=\frac{13}{10}.