Solveeit Logo

Question

Question: Prove that from the equality $\frac{sin^4\alpha}{a}+\frac{cos^4\alpha}{b}=\frac{1}{a+b}$ follows the...

Prove that from the equality sin4αa+cos4αb=1a+b\frac{sin^4\alpha}{a}+\frac{cos^4\alpha}{b}=\frac{1}{a+b} follows the relation; sin8αa3+cos8αb3=1(a+b)3\frac{sin^8\alpha}{a^3}+\frac{cos^8\alpha}{b^3}=\frac{1}{(a+b)^3}.

Answer

Proven

Explanation

Solution

To prove the given relation, we start with the initial equality and deduce the values of sin2α\sin^2\alpha and cos2α\cos^2\alpha.

Given equality:

sin4αa+cos4αb=1a+b\frac{\sin^4\alpha}{a}+\frac{\cos^4\alpha}{b}=\frac{1}{a+b}

We know that sin2α+cos2α=1\sin^2\alpha + \cos^2\alpha = 1. Let x=sin2αx = \sin^2\alpha and y=cos2αy = \cos^2\alpha. Then x+y=1x+y=1. The given equality can be rewritten as:

x2a+y2b=(x+y)2a+b\frac{x^2}{a} + \frac{y^2}{b} = \frac{(x+y)^2}{a+b}

This is a specific case of the identity: If P2A+Q2B=(P+Q)2A+B\frac{P^2}{A} + \frac{Q^2}{B} = \frac{(P+Q)^2}{A+B}, then it implies PA=QB\frac{P}{A} = \frac{Q}{B}. This identity can be proven as follows: Starting from P2A+Q2B=(P+Q)2A+B\frac{P^2}{A} + \frac{Q^2}{B} = \frac{(P+Q)^2}{A+B}: Multiply by AB(A+B)AB(A+B): B(A+B)P2+A(A+B)Q2=AB(P+Q)2B(A+B)P^2 + A(A+B)Q^2 = AB(P+Q)^2 (AB+B2)P2+(A2+AB)Q2=AB(P2+2PQ+Q2)(AB+B^2)P^2 + (A^2+AB)Q^2 = AB(P^2+2PQ+Q^2) ABP2+B2P2+A2Q2+ABQ2=ABP2+2ABPQ+ABQ2AB P^2 + B^2 P^2 + A^2 Q^2 + AB Q^2 = AB P^2 + 2AB PQ + AB Q^2 Subtract ABP2+ABQ2AB P^2 + AB Q^2 from both sides: B2P2+A2Q2=2ABPQB^2 P^2 + A^2 Q^2 = 2AB PQ Rearrange the terms: B2P22ABPQ+A2Q2=0B^2 P^2 - 2AB PQ + A^2 Q^2 = 0 This is a perfect square: (BPAQ)2=0(BP - AQ)^2 = 0 This implies BPAQ=0BP - AQ = 0, so BP=AQBP = AQ. Dividing by ABAB (assuming A,B0A, B \neq 0):

PA=QB\frac{P}{A} = \frac{Q}{B}

Applying this identity to our problem with P=sin2αP=\sin^2\alpha, Q=cos2αQ=\cos^2\alpha, A=aA=a, B=bB=b: From (sin2α)2a+(cos2α)2b=(sin2α+cos2α)2a+b\frac{(\sin^2\alpha)^2}{a} + \frac{(\cos^2\alpha)^2}{b} = \frac{(\sin^2\alpha+\cos^2\alpha)^2}{a+b}, it follows that:

sin2αa=cos2αb\frac{\sin^2\alpha}{a} = \frac{\cos^2\alpha}{b}

Let this common ratio be kk. So, sin2α=ak\sin^2\alpha = ak and cos2α=bk\cos^2\alpha = bk. Using the identity sin2α+cos2α=1\sin^2\alpha + \cos^2\alpha = 1: ak+bk=1ak + bk = 1 k(a+b)=1k(a+b) = 1 k=1a+bk = \frac{1}{a+b} Therefore, we have:

sin2α=aa+b\sin^2\alpha = \frac{a}{a+b} cos2α=ba+b\cos^2\alpha = \frac{b}{a+b}

Now, we need to prove the relation sin8αa3+cos8αb3=1(a+b)3\frac{\sin^8\alpha}{a^3}+\frac{\cos^8\alpha}{b^3}=\frac{1}{(a+b)^3}. Substitute the values of sin2α\sin^2\alpha and cos2α\cos^2\alpha into the left-hand side (LHS) of the relation to be proven:

LHS=(sin2α)4a3+(cos2α)4b3\text{LHS} = \frac{(\sin^2\alpha)^4}{a^3}+\frac{(\cos^2\alpha)^4}{b^3} LHS=(aa+b)4a3+(ba+b)4b3\text{LHS} = \frac{\left(\frac{a}{a+b}\right)^4}{a^3}+\frac{\left(\frac{b}{a+b}\right)^4}{b^3} LHS=a4(a+b)4a3+b4(a+b)4b3\text{LHS} = \frac{\frac{a^4}{(a+b)^4}}{a^3}+\frac{\frac{b^4}{(a+b)^4}}{b^3} LHS=a4a3(a+b)4+b4b3(a+b)4\text{LHS} = \frac{a^4}{a^3(a+b)^4}+\frac{b^4}{b^3(a+b)^4} LHS=a(a+b)4+b(a+b)4\text{LHS} = \frac{a}{(a+b)^4}+\frac{b}{(a+b)^4} LHS=a+b(a+b)4\text{LHS} = \frac{a+b}{(a+b)^4} LHS=1(a+b)3\text{LHS} = \frac{1}{(a+b)^3}

This is equal to the right-hand side (RHS) of the relation. Hence, the relation is proven.