Solveeit Logo

Question

Question: Show that eliminating x & y from the equations, sin x + sin y = a; cos x + cos y = b & tanx + tany =...

Show that eliminating x & y from the equations, sin x + sin y = a; cos x + cos y = b & tanx + tany = c gives 8ab(a2+b2)24a2=c\frac{8ab}{(a^{2}+b^{2})^{2}-4a^{2}}=c.

Answer

8ab(a2+b2)24a2=c\frac{8ab}{(a^{2}+b^{2})^{2}-4a^{2}}=c

Explanation

Solution

Given equations:

  1. sinx+siny=a\sin x + \sin y = a
  2. cosx+cosy=b\cos x + \cos y = b
  3. tanx+tany=c\tan x + \tan y = c

From (1) and (2), square and add them: (sinx+siny)2+(cosx+cosy)2=a2+b2(\sin x + \sin y)^2 + (\cos x + \cos y)^2 = a^2 + b^2 (sin2x+sin2y+2sinxsiny)+(cos2x+cos2y+2cosxcosy)=a2+b2(\sin^2 x + \sin^2 y + 2 \sin x \sin y) + (\cos^2 x + \cos^2 y + 2 \cos x \cos y) = a^2 + b^2 (sin2x+cos2x)+(sin2y+cos2y)+2(sinxsiny+cosxcosy)=a2+b2(\sin^2 x + \cos^2 x) + (\sin^2 y + \cos^2 y) + 2(\sin x \sin y + \cos x \cos y) = a^2 + b^2 1+1+2cos(xy)=a2+b21 + 1 + 2 \cos(x-y) = a^2 + b^2 2+2cos(xy)=a2+b22 + 2 \cos(x-y) = a^2 + b^2 cos(xy)=a2+b222\cos(x-y) = \frac{a^2+b^2-2}{2} (Eq. 4)

From (1) and (2), use sum-to-product formulas: 2sin(x+y2)cos(xy2)=a2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = a 2cos(x+y2)cos(xy2)=b2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = b

Divide the first by the second: tan(x+y2)=ab\tan\left(\frac{x+y}{2}\right) = \frac{a}{b} (Eq. 5)

Now, let's work with equation (3): tanx+tany=c\tan x + \tan y = c sinxcosx+sinycosy=c\frac{\sin x}{\cos x} + \frac{\sin y}{\cos y} = c sinxcosy+cosxsinycosxcosy=c\frac{\sin x \cos y + \cos x \sin y}{\cos x \cos y} = c sin(x+y)cosxcosy=c\frac{\sin(x+y)}{\cos x \cos y} = c (Eq. 6)

We need to express sin(x+y)\sin(x+y) and cosxcosy\cos x \cos y in terms of aa and bb.

From (5), we can find sin(x+y)\sin(x+y) and cos(x+y)\cos(x+y) using half-angle identities: sin(x+y)=2tan(x+y2)1+tan2(x+y2)=2(a/b)1+(a/b)2=2a/b(b2+a2)/b2=2aba2+b2\sin(x+y) = \frac{2 \tan\left(\frac{x+y}{2}\right)}{1 + \tan^2\left(\frac{x+y}{2}\right)} = \frac{2(a/b)}{1 + (a/b)^2} = \frac{2a/b}{(b^2+a^2)/b^2} = \frac{2ab}{a^2+b^2} (Eq. 7) cos(x+y)=1tan2(x+y2)1+tan2(x+y2)=1(a/b)21+(a/b)2=(b2a2)/b2(b2+a2)/b2=b2a2a2+b2\cos(x+y) = \frac{1 - \tan^2\left(\frac{x+y}{2}\right)}{1 + \tan^2\left(\frac{x+y}{2}\right)} = \frac{1 - (a/b)^2}{1 + (a/b)^2} = \frac{(b^2-a^2)/b^2}{(b^2+a^2)/b^2} = \frac{b^2-a^2}{a^2+b^2} (Eq. 8)

Now, let's find cosxcosy\cos x \cos y. We use the identity 2cosxcosy=cos(x+y)+cos(xy)2 \cos x \cos y = \cos(x+y) + \cos(x-y). Substitute (4) and (8) into this identity: 2cosxcosy=b2a2a2+b2+a2+b2222 \cos x \cos y = \frac{b^2-a^2}{a^2+b^2} + \frac{a^2+b^2-2}{2} 2cosxcosy=2(b2a2)+(a2+b2)(a2+b22)2(a2+b2)2 \cos x \cos y = \frac{2(b^2-a^2) + (a^2+b^2)(a^2+b^2-2)}{2(a^2+b^2)} 2cosxcosy=2b22a2+(a2+b2)22(a2+b2)2(a2+b2)2 \cos x \cos y = \frac{2b^2-2a^2 + (a^2+b^2)^2 - 2(a^2+b^2)}{2(a^2+b^2)} 2cosxcosy=(a2+b2)2+2b22a22a22b22(a2+b2)2 \cos x \cos y = \frac{(a^2+b^2)^2 + 2b^2-2a^2 - 2a^2-2b^2}{2(a^2+b^2)} 2cosxcosy=(a2+b2)24a22(a2+b2)2 \cos x \cos y = \frac{(a^2+b^2)^2 - 4a^2}{2(a^2+b^2)} So, cosxcosy=(a2+b2)24a24(a2+b2)\cos x \cos y = \frac{(a^2+b^2)^2 - 4a^2}{4(a^2+b^2)} (Eq. 9)

Finally, substitute (7) and (9) into (6): c=sin(x+y)cosxcosy=2aba2+b2(a2+b2)24a24(a2+b2)c = \frac{\sin(x+y)}{\cos x \cos y} = \frac{\frac{2ab}{a^2+b^2}}{\frac{(a^2+b^2)^2 - 4a^2}{4(a^2+b^2)}} c=2aba2+b2×4(a2+b2)(a2+b2)24a2c = \frac{2ab}{a^2+b^2} \times \frac{4(a^2+b^2)}{(a^2+b^2)^2 - 4a^2} c=8ab(a2+b2)24a2c = \frac{8ab}{(a^2+b^2)^2 - 4a^2}

This proves the required relation.