Question
Question: Let $f(x) = (sin(tan^{-1} x) + sin(cot^{-1} x))^2 -1, |x|>1$. If $\frac{dy}{dx} = \frac{1}{2} \frac{...
Let f(x)=(sin(tan−1x)+sin(cot−1x))2−1,∣x∣>1. If dxdy=21dxd(sin−1(f(x))) and y(3)=6π, then y(−3) is equal to

A
3π
B
32π
C
−6π
D
65π
Answer
65π
Explanation
Solution
First, simplify f(x)=(sin(tan−1x)+sin(cot−1x))2−1 to f(x)=x2+12x.
Express sin−1(f(x)) in terms of tan−1x for ∣x∣>1:
- If x>1, sin−1(f(x))=π−2tan−1x.
- If x<−1, sin−1(f(x))=−π−2tan−1x.
Differentiate sin−1(f(x)) to get −1+x22 for both cases.
Calculate dxdy=21(−1+x22)=−1+x21.
Integrate to find y(x)=−tan−1x+C. Assume C is constant across the domain.
Use y(3)=6π to find C=2π.
Calculate y(−3)=−tan−1(−3)+2π=3π+2π=65π.