Solveeit Logo

Question

Question: A cubical volume is bounded by the surfaces x = 0, x = a, y = 0, y = a, z = 0, z = a. The electric f...

A cubical volume is bounded by the surfaces x = 0, x = a, y = 0, y = a, z = 0, z = a. The electric field in the region is given by E=E0xi^\overrightarrow{E} = E_0x\hat{i}. Where, E0=4×104NC1m1E_0 = 4 \times 10^4 NC^{-1} m^{-1}. If a = 2 cm, the charge contained in the cubical volume is Q x 101410^{-14}C. The value of Q is _____.(Take ϵ0\epsilon_0 = 9 × 101210^{-12} C2/Nm2C^2/Nm^2)

Answer

288

Explanation

Solution

The electric field in the region is given by E=E0xi^\overrightarrow{E} = E_0x\hat{i}.

The cubical volume is bounded by the surfaces x=0,x=a,y=0,y=a,z=0,z=ax = 0, x = a, y = 0, y = a, z = 0, z = a.

We use Gauss's Law to find the charge contained in the volume: EdA=qenclosedϵ0\oint \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{enclosed}}{\epsilon_0}.

The total electric flux through the closed surface of the cube is the sum of the fluxes through its six faces.

The electric field is in the x-direction (i^\hat{i}).

For the faces perpendicular to the y-axis (y=0,y=ay=0, y=a) and z-axis (z=0,z=az=0, z=a), the area vectors are perpendicular to the electric field (j^\hat{j} or k^\hat{k}), so the flux through these four faces is zero.

For the face at x=0x=0, the electric field is E(x=0)=E0(0)i^=0\overrightarrow{E}(x=0) = E_0(0)\hat{i} = \overrightarrow{0}. The area vector is a2i^-a^2\hat{i}. The flux through this face is Φ0=EA=0(a2i^)=0\Phi_0 = \overrightarrow{E} \cdot \overrightarrow{A} = \overrightarrow{0} \cdot (-a^2\hat{i}) = 0.

For the face at x=ax=a, the electric field is E(x=a)=E0ai^\overrightarrow{E}(x=a) = E_0a\hat{i}. The area vector is +a2i^+a^2\hat{i}. The flux through this face is Φa=EA=(E0ai^)(a2i^)=E0a3\Phi_a = \overrightarrow{E} \cdot \overrightarrow{A} = (E_0a\hat{i}) \cdot (a^2\hat{i}) = E_0a^3.

The total electric flux through the cube is Φnet=Φ0+Φa+Φy0+Φya+Φz0+Φza=0+E0a3+0+0+0+0=E0a3\Phi_{net} = \Phi_0 + \Phi_a + \Phi_{y0} + \Phi_{ya} + \Phi_{z0} + \Phi_{za} = 0 + E_0a^3 + 0 + 0 + 0 + 0 = E_0a^3.

According to Gauss's Law, the charge enclosed is qenclosed=ϵ0Φnet=ϵ0E0a3q_{enclosed} = \epsilon_0 \Phi_{net} = \epsilon_0 E_0 a^3.

Given values are E0=4×104NC1m1E_0 = 4 \times 10^4 NC^{-1} m^{-1}, a=2a = 2 cm =2×102= 2 \times 10^{-2} m, and ϵ0=9×1012C2/Nm2\epsilon_0 = 9 \times 10^{-12} C^2/Nm^2.

Substitute the values:

qenclosed=(9×1012C2/Nm2)×(4×104NC1m1)×(2×102m)3q_{enclosed} = (9 \times 10^{-12} C^2/Nm^2) \times (4 \times 10^4 NC^{-1} m^{-1}) \times (2 \times 10^{-2} m)^3

qenclosed=9×1012×4×104×(8×106)Cq_{enclosed} = 9 \times 10^{-12} \times 4 \times 10^4 \times (8 \times 10^{-6}) C

qenclosed=(9×4×8)×1012+46Cq_{enclosed} = (9 \times 4 \times 8) \times 10^{-12 + 4 - 6} C

qenclosed=288×1014Cq_{enclosed} = 288 \times 10^{-14} C.

The problem states that the charge contained in the volume is Q×1014Q \times 10^{-14} C.

Comparing this with the calculated value, we have Q×1014C=288×1014CQ \times 10^{-14} C = 288 \times 10^{-14} C.

Therefore, Q=288Q = 288.