Solveeit Logo

Question

Question: 3.75g of a mixture of $CaCO_3$ and $MgCO_3$ is dissolved in 1L, 0.1N $HCl$ to liberate 0.04 moles of...

3.75g of a mixture of CaCO3CaCO_3 and MgCO3MgCO_3 is dissolved in 1L, 0.1N HClHCl to liberate 0.04 moles of CO2CO_2. Calculate The Percentage composition of CaCO3CaCO_3 and MgCO3MgCO_3 in the mixture,

Answer

CaCO₃: 65%, MgCO₃: 35%

Explanation

Solution

  1. Reactions: CaCO3+2HClCaCl2+H2O+CO2CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2 MgCO3+2HClMgCl2+H2O+CO2MgCO_3 + 2HCl \rightarrow MgCl_2 + H_2O + CO_2

  2. Mass and Mole Equations: Let wCaCO3w_{CaCO_3} and wMgCO3w_{MgCO_3} be masses. Molar masses: MCaCO3100M_{CaCO_3} \approx 100 g/mol, MMgCO384M_{MgCO_3} \approx 84 g/mol. wCaCO3+wMgCO3=3.75w_{CaCO_3} + w_{MgCO_3} = 3.75 g. wCaCO3100+wMgCO384=0.04\frac{w_{CaCO_3}}{100} + \frac{w_{MgCO_3}}{84} = 0.04 moles.

  3. Solve Equations: Substitute wMgCO3=3.75wCaCO3w_{MgCO_3} = 3.75 - w_{CaCO_3} into the second equation: wCaCO3100+3.75wCaCO384=0.04\frac{w_{CaCO_3}}{100} + \frac{3.75 - w_{CaCO_3}}{84} = 0.04 84wCaCO3+100(3.75wCaCO3)=0.04×840084 w_{CaCO_3} + 100(3.75 - w_{CaCO_3}) = 0.04 \times 8400 84wCaCO3+375100wCaCO3=33684 w_{CaCO_3} + 375 - 100 w_{CaCO_3} = 336 16wCaCO3=39-16 w_{CaCO_3} = -39 wCaCO3=2.4375w_{CaCO_3} = 2.4375 g. wMgCO3=3.752.4375=1.3125w_{MgCO_3} = 3.75 - 2.4375 = 1.3125 g.

  4. Percentage Composition: % CaCO3=2.43753.75×100=65%CaCO_3 = \frac{2.4375}{3.75} \times 100 = 65\%. % MgCO3=1.31253.75×100=35%MgCO_3 = \frac{1.3125}{3.75} \times 100 = 35\%.