Solveeit Logo

Question

Question: The equation $(1-tan\theta)(1+tan\theta)sec^2\theta + 2^{tan^2\theta}=0$ has:...

The equation (1tanθ)(1+tanθ)sec2θ+2tan2θ=0(1-tan\theta)(1+tan\theta)sec^2\theta + 2^{tan^2\theta}=0 has:

A

No solution in the interval (π2,0)(-\frac{\pi}{2},0)

B

Two solutions in the interval (π2,0)(-\frac{\pi}{2},0)

C

No solution in the interval (0,π2)(0,\frac{\pi}{2})

D

Two solutions in the interval (0,π2)(0,\frac{\pi}{2})

Answer

B, D

Explanation

Solution

The given equation is: (1tanθ)(1+tanθ)sec2θ+2tan2θ=0(1-\tan\theta)(1+\tan\theta)\sec^2\theta + 2^{\tan^2\theta}=0

First, simplify the terms:

  1. (1tanθ)(1+tanθ)=12tan2θ=1tan2θ(1-\tan\theta)(1+\tan\theta) = 1^2 - \tan^2\theta = 1 - \tan^2\theta.
  2. We know that sec2θ=1+tan2θ\sec^2\theta = 1 + \tan^2\theta.

Substitute these into the equation: (1tan2θ)(1+tan2θ)+2tan2θ=0(1 - \tan^2\theta)(1 + \tan^2\theta) + 2^{\tan^2\theta} = 0

Again, apply the difference of squares formula: 12(tan2θ)2+2tan2θ=01^2 - (\tan^2\theta)^2 + 2^{\tan^2\theta} = 0 1tan4θ+2tan2θ=01 - \tan^4\theta + 2^{\tan^2\theta} = 0

Let x=tan2θx = \tan^2\theta. Since θ(π2,π2)\theta \in (-\frac{\pi}{2}, \frac{\pi}{2}), tanθ\tan\theta can take any real value. Therefore, tan2θ=x\tan^2\theta = x must be non-negative, i.e., x0x \ge 0.

The equation becomes: 1x2+2x=01 - x^2 + 2^x = 0 Rearrange the terms: 2x=x212^x = x^2 - 1

To find the solutions for xx, we can analyze the function h(x)=2xx2+1h(x) = 2^x - x^2 + 1. We are looking for x0x \ge 0 such that h(x)=0h(x)=0.

Let's evaluate h(x)h(x) for some non-negative integer values:

  • For x=0x=0: h(0)=2002+1=10+1=2h(0) = 2^0 - 0^2 + 1 = 1 - 0 + 1 = 2.
  • For x=1x=1: h(1)=2112+1=21+1=2h(1) = 2^1 - 1^2 + 1 = 2 - 1 + 1 = 2.
  • For x=2x=2: h(2)=2222+1=44+1=1h(2) = 2^2 - 2^2 + 1 = 4 - 4 + 1 = 1.
  • For x=3x=3: h(3)=2332+1=89+1=0h(3) = 2^3 - 3^2 + 1 = 8 - 9 + 1 = 0.

So, x=3x=3 is a solution.

Let's check for other solutions. Consider the derivative of h(x)h(x): h(x)=ddx(2xx2+1)=2xln22xh'(x) = \frac{d}{dx}(2^x - x^2 + 1) = 2^x \ln 2 - 2x.

Evaluate h(x)h'(x) at x=3x=3: h(3)=23ln22(3)=8ln26h'(3) = 2^3 \ln 2 - 2(3) = 8 \ln 2 - 6. Using ln20.693\ln 2 \approx 0.693: h(3)8×0.6936=5.5446=0.456h'(3) \approx 8 \times 0.693 - 6 = 5.544 - 6 = -0.456. Since h(3)<0h'(3) < 0, the function h(x)h(x) is decreasing at x=3x=3. This means for xx slightly greater than 33, h(x)h(x) will become negative.

Let's check h(4)h(4): h(4)=2442+1=1616+1=1h(4) = 2^4 - 4^2 + 1 = 16 - 16 + 1 = 1. Since h(3)=0h(3)=0 and h(4)=1h(4)=1, and h(x)h(x) is continuous, and h(3)<0h'(3)<0 implies h(x)h(x) goes negative after x=3x=3, there must be another root between 33 and 44. To confirm h(x)h(x) becomes negative, let's check h(3.2)h(3.2): h(3.2)=23.2(3.2)2+19.18910.24+1=0.051h(3.2) = 2^{3.2} - (3.2)^2 + 1 \approx 9.189 - 10.24 + 1 = -0.051. Since h(3.2)<0h(3.2) < 0 and h(4)=1h(4) = 1, by the Intermediate Value Theorem, there exists another root x0(3.2,4)x_0 \in (3.2, 4).

So, we have two distinct solutions for x=tan2θx = \tan^2\theta:

  1. x=3x = 3
  2. x=x0x = x_0, where x0(3.2,4)x_0 \in (3.2, 4)

Now, we convert these solutions back to θ\theta:

Case 1: tan2θ=3\tan^2\theta = 3 tanθ=±3\tan\theta = \pm\sqrt{3}

  • If tanθ=3\tan\theta = \sqrt{3}, then θ=π3\theta = \frac{\pi}{3}. This solution lies in the interval (0,π2)(0, \frac{\pi}{2}).
  • If tanθ=3\tan\theta = -\sqrt{3}, then θ=π3\theta = -\frac{\pi}{3}. This solution lies in the interval (π2,0)(-\frac{\pi}{2}, 0).

Case 2: tan2θ=x0\tan^2\theta = x_0, where x0(3.2,4)x_0 \in (3.2, 4) tanθ=±x0\tan\theta = \pm\sqrt{x_0} Since x0(3.2,4)x_0 \in (3.2, 4), we have x0(3.2,4)=(3.2,2)\sqrt{x_0} \in (\sqrt{3.2}, \sqrt{4}) = (\sqrt{3.2}, 2). Note that 3.21.788\sqrt{3.2} \approx 1.788.

  • If tanθ=x0\tan\theta = \sqrt{x_0}: Since x0>0\sqrt{x_0} > 0, θ=arctan(x0)\theta = \arctan(\sqrt{x_0}). This solution lies in (0,π2)(0, \frac{\pi}{2}). Since x03\sqrt{x_0} \ne \sqrt{3}, this solution is distinct from π3\frac{\pi}{3}.
  • If tanθ=x0\tan\theta = -\sqrt{x_0}: Since x0<0-\sqrt{x_0} < 0, θ=arctan(x0)=arctan(x0)\theta = \arctan(-\sqrt{x_0}) = -\arctan(\sqrt{x_0}). This solution lies in (π2,0)(-\frac{\pi}{2}, 0). Since x03-\sqrt{x_0} \ne -\sqrt{3}, this solution is distinct from π3-\frac{\pi}{3}.

In summary:

  • In the interval (π2,0)(-\frac{\pi}{2}, 0), we have two distinct solutions: θ=π3\theta = -\frac{\pi}{3} and θ=arctan(x0)\theta = -\arctan(\sqrt{x_0}).
  • In the interval (0,π2)(0, \frac{\pi}{2}), we have two distinct solutions: θ=π3\theta = \frac{\pi}{3} and θ=arctan(x0)\theta = \arctan(\sqrt{x_0}).

Therefore, both options (B) and (D) are correct.